Math, asked by Anonymous, 3 months ago

Decide whether the following sequence is an A.P. or not. if so, find the 20th term of the progression :-
-12, -5, 2, 9, 16, 23, 30, ...​

Answers

Answered by KittyBIoom
486

  \fbox{\sf \huge \underline{solution}}  \huge\rightarrow  \\  \\  \\

 \sf{here,a = t_1 =  - 12,t_2 =  - 5,t_3 = 2,t_4 = 9,t_5 = 16, \: ...} \\  \\

 \sf \implies{t_2 - t_1 =  - 5 - ( - 12) =  - 5 + 12 = 7</p><p></p><p>,} \\  \\

 \sf \implies{t_3 - t_2 =  - 2 - ( - 5) = 2 + 5 = 7</p><p></p><p>, \: } \\  \\

 \sf  \implies{t_4 - t_3 = 9 - 2 = 7</p><p></p><p>,  \: } \\  \\

 \sf \implies{t_5 - t_4 = 16 - 9 = 7} \\  \\

 \sf{the \: common \: difference = d = 7} \\  \\  \sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(a \: constant \: number)} \\  \\

 \sf \therefore{the \: given \: sequence \: is \: an \: a.p.} \\  \\

 \sf \implies{t_n = a + (n - 1)d \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(formula)} \\  \\

 \sf{t_20 -12 + (20 - 1) \times 7  }  \\  \sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(substituting \: the \: values)} \\  \\

 \sf \implies{ - 12 + 19 \times 7} \\  \\

 \sf \implies{ - 12 + 133} \\  \\

 \fbox{  \sf  \implies\underline{t_20 = 121}} \\  \\

 \sf{ans \mapsto \: the \: given \: sequence \: is \: an \: a.p.} \\  \sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: the \: 20th \: term \: of \: the \: a.p.is \: 121.} \\  \\  \\

Answered by ajjuyadavA20
17

Answer:

The 20th term of the progression is 121.

Attachments:
Similar questions