Math, asked by chinmaynage12, 3 months ago

Decide whether the given sequence 24,17,10,3...is an A.P.? If yes

find its common term (tn) .​

Answers

Answered by MaheswariS
6

\textbf{Given:}

\textsf{Sequence is}

\mathsf{24,17,10,3,\;.\;.\;.\;.\;.}

\textbf{To find:}

\textsf{Whether the given sequence is an A.P or not}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{24,17,10,3,\;.\;.\;.\;.\;.}

\mathsf{t_2-t_1=17-24=-7}

\mathsf{t_3-t_2=10-17=-7}

\mathsf{t_4-t_3=3-10=-7}

\implies\textsf{Differences are equal}

\therefore\textsf{The given sequnce is an A.P}

\textsf{The n th term of the sequence is}

\mathsf{t_n=a+(n-1)d}

\implies\mathsf{t_n=24+(n-1)(-7)}

\imlies\mathsf{t_n=24-7n+7}

\imlies\boxed{\mathsf{t_n=31-7n}}

\textbf{Find more:}

For an A.P. the first term (a) = 8 common difference (d) = -5 find t2, and t3​

https://brainly.in/question/38272597

Similar questions