DECIMAL NUMBER SYSTEM-এর বৈশিষ্ট্যগুলি লেখ।
Answers
The decimal numeral system is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as decimal notation.
Answer:
Decimal Number System
In the number system, each number is represented by its base. If the base is 2 it is a binary number, if the base is 8 it is an octal number, if the base is 10, then it is called decimal number system and if the base is 16, it is part of the hexadecimal number system. The conversion of decimal numbers to any other number system is an easy method. But to convert other base number systems into decimal numbers requires practice. In this article, let us learn more on the decimal number system and the conversion from a decimal number system to other systems here in detail.
In the decimal number system, the numbers are represented with base 10. The way of denoting the decimal numbers with base 10 is also termed as decimal notation. This number system is widely used in computer applications. It is also called the base-10 number system which consists of 10 digits, such as, 0,1,2,3,4,5,6,7,8,9. Each digit in the decimal system has a position and every digit is ten times more significant than the previous digit. Suppose, 25 is a decimal number, then 2 is ten times more than 5. Some examples of decimal numbers are:-
(12)10, (345)10, (119)10, (200)10, (313.9)10
A number system which uses digits from 0 to 9 to represent a number with base 10 is the decimal system number. The number is expressed in base-10 where each value is denoted by 0 or first nine positive integers. Each value in this number system has the place value of power 10. It means the digit at the tens place is ten times greater than the digit at the unit place. Let us see some more examples:
(92)10 = 9×101+2×100
(200)10 = 2×102+0x101+0x100
The decimal numbers which have digits present on the right side of the decimal (.) denote each digit with decreasing power of 10. Some examples are:
(30.2)10= 30×101+0x100+2×10-1
(212.367)10 = 2×102+1×101+2×100+3×10-1+6×10-2+7×10-3