Deduce an expression for the radial
distribution function for s-orbital. Show
that the maximum probability of
finding the electron of ground state
H-like atom is at r
a
z
Answers
Answered by
1
Answered by
1
Explanation:
Given :
In a Triangle , the three angles are (x+5) , (x+10) and (3x+15) .
To Find :
Value of x .
Solution :
As we know that Sum of all three angles of a Triangle is 180° . So ,
\longmapsto\tt{x+5+x+10+3x+15=180^{\circ}}⟼x+5+x+10+3x+15=180
∘
\longmapsto\tt{5x+30=180^{\circ}}⟼5x+30=180
∘
\longmapsto\tt{5x=180-30}⟼5x=180−30
\longmapsto\tt{5x=150}⟼5x=150
\longmapsto\tt{x=\dfrac{150}{5}}⟼x=
5
150
\longmapsto\tt\bf{x=30}⟼x=30
So , The Value of x is 30 .
VERIFICATION :
\longmapsto\tt{x+5+x+10+3x+15=180^{\circ}}⟼x+5+x+10+3x+15=180
∘
\longmapsto\tt{30+5+30+10+3(30)+15=180^{\circ}}⟼30+5+30+10+3(30)+15=180
∘
\longmapsto\tt{90+90=180^{\circ}}⟼90+90=180
∘
\longmapsto\tt\bf{180^{\circ}=180^{\circ}}⟼180
∘
=180
∘
HENCE VERIFIED
Similar questions