Physics, asked by adshara332, 1 year ago

Deduce an expression for the velocity of a particle executing shm when particle velocity at maximum and minimum

Answers

Answered by aditiporwal
37
hope it helps!
please mark as brainlist.
Attachments:
Answered by anjalin
4

Maximum velocity is V_{max}=\omega \cdot r and Minimum velocity V_{min}=0.

Explanation:

  • Suppose that a particle is in SHM of amplitude

r = movement of a particle at time t is

y = r\hspace{0.05 cm}sin\hspace{0.05 cm}\omega t

The velocity of the particle at a time t is given by

v=\frac{dy}{dt}

v=\frac{d}{dt}(r\hspace{0.05 cm}sin\hspace{0.05 cm}\omega t)

v=(r\hspace{0.05 cm}\omega\hspace{0.05 cm}cos\hspace{0.05 cm}\omega t)

v=r\hspace{0.05 cm}\omega\hspace{0.05 cm}\sqrt{1-sin^{2}\hspace{0.05 cm}\omega\hspace{0.05 cm}t}

v=r\hspace{0.05 cm}\omega\hspace{0.05 cm}\sqrt{1-\frac{y^{2}}{r^{2}}}

v=r\hspace{0.05 cm}\omega\hspace{0.05 cm}\sqrt{\frac{r^{2}-y^{2}}{r^{2}}}

v=\frac{r\hspace{0.05 cm}\omega}{r}\hspace{0.05 cm}\sqrt{r^{2}-y^{2}}}

v=\hspace{0.05 cm}\omega\hspace{0.05 cm}\sqrt{r^{2}-y^{2}}}

Thus, particle is at one mean position then,

y=0

So,

v=\hspace{0.05 cm}\omega\hspace{0.05 cm}\sqrt{r^{2}-y^{2}}}

put y=0

v=\hspace{0.05 cm}\omega\hspace{0.05 cm}\sqrt{r^{2}-0}}

v=\hspace{0.05 cm}\omega\hspace{0.05 cm}\sqrt{r^{2}}}

v=\hspace{0.05 cm}\omega\hspace{0.05 cm}r (Max velocity)

  • It is also called velocity amplitude for SHM.
  • If the particle is at an extreme position then,

y=r

So,

v=\hspace{0.05 cm}\omega\hspace{0.05 cm}\sqrt{r^{2}-y^{2}}}

put y=r

v=\hspace{0.05 cm}\omega\hspace{0.05 cm}\sqrt{r^{2}-r^{2}}}

v=\hspace{0.05 cm}\omega\hspace{0.05 cm}\sqrt{0}}

v=0 (Min velocity)

Thus, Maximum velocity is V_{max}=\omega \cdot r Minimum velocity V_{min}=0.

Similar questions
Math, 1 year ago