Math, asked by diwanamrmznu, 17 days ago

deferenciation eq ^n solve pls
__​

Attachments:

Answers

Answered by mathdude500
1

Question :-

Solve the differential equation

\rm \: ( {x}^{2} + xy)dy \:  =  \: ( {x}^{2} +  {y}^{2})dx \\

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm \: ( {x}^{2} + xy)dy \:  =  \: ( {x}^{2} +  {y}^{2})dx \\

can be rewritten as

\rm \: \dfrac{dy}{dx}  = \dfrac{ {x}^{2}  +  {y}^{2} }{ {x}^{2}  + xy}  \\

As degree of each term of numerator and denominator is same. So, its a homogeneous differential equation.

So, to solve such differential equation, we substitute

 \red{\rm \: y = vx -  -  - (1)} \\

On differentiating both sides w. r. t. x, we get

 \red{\rm \: \dfrac{dy}{dx} = v\dfrac{d}{dx}x + x\dfrac{d}{dx}v} \\

 \red{\rm \: \dfrac{dy}{dx} = v \times 1 + x\dfrac{dv}{dx}} \\

 \red{\rm \: \dfrac{dy}{dx} = v + x\dfrac{dv}{dx}} \\

So, on substituting these values, we get

\rm \: v + x\dfrac{dy}{dx}  = \dfrac{ {x}^{2}  +  {(vx)}^{2} }{ {x}^{2}  + x(vx)}  \\

\rm \: v + x\dfrac{dy}{dx}  = \dfrac{ {x}^{2}  + {v}^{2} {x}^{2} }{ {x}^{2}  +  {vx}^{2} }  \\

\rm \: v + x\dfrac{dy}{dx}  = \dfrac{ {x}^{2}(1  + {v}^{2})}{{x}^{2}(1  +v) }  \\

\rm \: v + x\dfrac{dy}{dx}  = \dfrac{ 1  + {v}^{2}}{1  +v }  \\

\rm \:  x\dfrac{dy}{dx}  = \dfrac{ 1  + {v}^{2}}{1  +v }  - v \\

\rm \:  x\dfrac{dy}{dx}  = \dfrac{ 1  + {v}^{2} - v -  {v}^{2} }{1  +v } \\

\rm \:  x\dfrac{dy}{dx}  = \dfrac{ 1- v}{1  +v } \\

On separating the variables, we get

\rm \:  \dfrac{dx}{x}  = \dfrac{ 1 +  v}{1   - v } \: dv \\

On integrating both sides, we get

\rm \:  \displaystyle\int\rm \dfrac{dx}{x}  = \displaystyle\int\rm \dfrac{ 1 +  v}{1   - v } \: dv \\

\rm \:  log x =  - \displaystyle\int\rm \dfrac{v + 1}{v  - 1} \: dv \\

\rm \:  log x =  - \displaystyle\int\rm \dfrac{v  - 1 + 1+ 1}{v  - 1} \: dv \\

\rm \:  log x =  - \displaystyle\int\rm \dfrac{v  - 1 +2}{v  - 1} \: dv \\

\rm \:  log x =  - \displaystyle\int\rm \bigg(1 + \dfrac{2}{v  - 1} \bigg)\: dv \\

\rm \:  log x =  - (v + 2log(v - 1)) + c \\

\rm \:  log x =  - v  -  2log(v - 1) + c \\

\rm \:  log x + v  + 2log(v - 1)  =  c \\

\rm \:  log x +  \frac{y}{x} + 2log\bigg(\dfrac{y}{x}  - 1\bigg)  =  c \\

\rm \:  log x +  \frac{y}{x} + 2log\bigg(\dfrac{y - x}{x}\bigg)  =  c \\

\rm \:  logx+  \frac{y}{x} + 2[log(y - x) - logx]=  c \\

\rm \:  logx+  \frac{y}{x} + 2log(y - x) - 2logx=  c \\

\rm\implies \:\rm \:  \frac{y}{x} + 2log(y - x) - logx=  c \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by talpadadilip417
3

Step-by-step explanation:

Sol.

The given equation is

 \\  \pmb{\[ \begin{array}{l}\displaystyle\tt \left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x \\  \\   \displaystyle\tt \therefore \quad \frac{d y}{d x}=\frac{x^{2}+y^{2}}{x^{2}+x y} \qquad \ldots(i) \end{array} \]}

which is a homogeneous differential equation. Put y=vx

  \text{so that \( \tt \dfrac{d y}{d x}=v+x \dfrac{d v}{d x} \) Putting value of \(  \tt\dfrac{d y}{d x} \) and \( \tt y \) in (i),}

we have

 \begin{aligned}&  \tt v+x \frac{d v}{d x} =\frac{x^{2}+v^{2} x^{2}}{x^{2}+v x^{2}} \\ \\  \Rightarrow & \tt v+x \frac{d v}{d x}= \frac{x^{2}\left(1+v^{2}\right)}{x^{2}(1+v)} \\ \\  \Rightarrow & \tt x \frac{d v}{d x}=\frac{1+v^{2}}{1+v}-v \\ \\  \Rightarrow & \tt x \frac{d v}{d x}=\frac{1+v^{2}-v-v^{2}}{1+v} \\ \\  \Rightarrow & \tt \frac{1+v}{1-v} d v=\frac{1}{x} d x \end{aligned}

Integrating both sides, we have

\[ \begin{aligned} & \tt \frac{1+v}{1-v} d v=\int \frac{1}{x} d x \Rightarrow \int\left(-1+\frac{2}{1-v}\right) d v \\ \\  & \tt \therefore-v-2 \log |1-v|=\log |x|-\log c \\ \\  \Rightarrow & \tt-\frac{y}{x}-2 \log \left|1-\frac{y}{x}\right|=\log |x|-\log c \\ \\  \Rightarrow & \tt-\frac{y}{x}-\log \frac{(x-y)^{2}}{x^{2}}=\log \left|\frac{x}{c}\right| \\ \\  \Rightarrow & \tt-\frac{y}{x}=\log \frac{(x-y)^{2}}{x^{2}} \times \frac{x}{c} \\ \\  \Rightarrow & \tt \frac{(x-y)^{2}}{c x}=e^{-y / x} \\  \\  \Rightarrow& \tt(x-y)^{2}=c x e^{-y / x} \end{aligned} \]

which is required solution.

Similar questions