Math, asked by satyamgarg3p0mwk3, 1 year ago

Define 'a' if f(x) = x^10 - x^3 + 1 is monotonically increasing on [a, infinity] ?

Answers

Answered by abhi178
1
f(x) = x^{10}-x^3+1
is monotonically increasing . it means
f'(x) ≥ 0 in interval [a, ∞ )
so,
f'(x) =10x^{10-1}-3x^{3-1}+0\\\\=10x^9-3x^2\\\\=x^2(10x^7-3)

now,
f'(x)=x^2(10x^7-3) \geqslant 0 \\ \\ x \geqslant \sqrt[7]{ \frac{3}{10} } \: \: \: \: \: or \: \: \: \: \: \: x \leqslant 0
hence,
a=(\frac{3}{10})^{\frac{1}{7}}

satyamgarg3p0mwk3: Thank you
abhi178: welcome
satyamgarg3p0mwk3: Nicely explained
Similar questions