Physics, asked by ArslanxD9039, 1 year ago

Define alpha, beta and gamma. Derive relation between alpha and gamma.

Answers

Answered by khushali1232
22

Explanation:

This is regarding linear , areal, volume expansion of substances.

ΔL = α L ΔT

Area of a square sheet of dimensions L * L:

 = A+ΔA = (L+ α L ΔT)² = L² + 2 α L² ΔT   ignoring α² terms (too small).

ΔA = 2 α A ΔT

β = ΔA/A  = 2 α

Volume = V = L³

Changed volume = V+ ΔV = (L + α L ΔT)³

         = L³ + 3 α L³ ΔT  +  terms with α² or α³  ignored (too small)

ΔV = 3 α V ΔT

=>  gamma = ΔV/V = 3 α

Answered by Ʀɑү
280

According to Linear , Superficial or Area and Cubical or volume expansion.

Suppose a cube of each length (l) and it's initial volume is (v)

When we heat this cube by δT it's each length will be increased by δl.

  \: l' = l +  \delta \: l .... \sf(i)

We know that,

  \alpha  =  \frac{ \delta \: l}{l \times  \delta \: T}

 \delta \: l =  \alpha l \delta  T ... \sf(ii)

put the volume of the cube is V'

V' =  {(l' )}^{3}  .... \sf(iii)

From equation (ii) we will find volume of (l')³

 {(l')}^{3} =  {l}^{3}  (1 +  \alpha  \delta \:  {T)}^{3}  \\  \\ {(l')}^{3} =  {l}^{3}  ( {1}^{3}  +  \alpha ' \delta \:  {T)}^{3} + 3 \times  \alpha  \delta \: T(1 +  \alpha  \delta \: T) \\  \\ {(l')}^{3} =  {l}^{3} ( {l}^{3}  +  { \alpha }^{3} \delta \:  {T}^{3} )+ 3 \times  \alpha\delta \: T + 3 \times 1 \times  { \alpha }^{2}   \delta {T}^{2} \\  \\

{(l')}^{3} = V(1 + 3 \alpha  \delta \: T).... \sf(iv)

Now neglecting higher power....

put the value of (l')³ in equation (iii)

V' = \: {(l')}^{3}

V' =V(1 + 3 \alpha  \delta \: T)

According to the coefficient of cubical expansion :-

 \gamma  =  \frac{ \delta \: V}{V  \delta \: T}

 \gamma  =  \frac{V' - V}{V' \delta T}

 \gamma  =  \frac{V(1 + 3 \alpha  \delta T) - V}{V \delta T}

 \gamma  =  \frac{ \cancel{V}(1 + 3 \alpha  \delta T - 1)}{ \cancel{V}\delta T}

 \gamma  =  \frac{3 \alpha  \cancel{\delta T}}{ \cancel{\delta T}}

 \gamma  = 3 \alpha

 \frac{ \alpha }{1}  =   \frac{ \gamma }{3}

Similarly,

 \:  \:  \:  \:  \:   \red{\boxed{\frac{ \alpha }{1}  =  \frac{ \beta }{2}  =  \frac{ \gamma }{3}}}

Similar questions