Science, asked by parasdhawale, 6 months ago

define centripetal force​

Answers

Answered by aryansonawane263550
3

Answer:

centripetal force means moving or trending to move towards a centre

Answered by aryan073
1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:  \star  \large \green { \bold{ \underline{ \underline{answer : }}}}

 \:  \ \star  \underline{\bf{ \color{red} \: centripetal \: force : }}

 \to \tt{the \: force \: acting \: on \: a \: object \: moving \: in \:  a \: circle \: and \: directed \: towards \: centre \: of \: the \: circle}

 \tt{is \: called \: centripetal \: force.}

 \bullet\tt{any \: force \: or \: combination \: of \: a \: forces \: can \: cause \: a \: centripetal \: or \: radial \: acceleration \: }

 \:  \:  \large \blue{ \bold{ \underline{ \:some \: examples}}}

 \to \tt{the \: tension \: in \: the \: rope \: on \: the \: tether \: ball \: the \: force \: of \: earths \: gravity} \:

 \tt{on \: the \: moon \:  \: friction \: between \: roller \: skates \: and \: a \: rink \: floor \: and \: a \: banked \: roadways \: force \: on \: the \: car \: and \: forces \: on \: the \: tube \: of \: a \: spinning \: centrifuge.}

  \bullet \tt{any \: net \: force \: causing \: uniform \: circular \: motion \: is \: called \: centripetal \: force}.

 \bullet \tt{the \: direction \: of \: a \: centripetal \: force \: is \: toward \: the \: centre \: of \: curvature \: the \: same \: as \: the \: direction \: of \: centripetal \: acceleration}

 \star  \underline { \tt{according \: to \: newtons \: second \: law}}

 \bullet \tt{net \: force \: is \: mass \: times \: acceleration : net  \to \: f = ma \: }

 \bullet \tt{for \: uniform \: circular \: motion \: the \: acceleration \: is \: the \: centripetal \: acceleration \ \: a = ac }

 \tt{thus \: the \: magnitude \: of \: centripetal \: force \: fc \: is \: fc \:  = mac}

 \\  \\ \bigstar\tt {by \: using \: the \: expression \: of \: centripetal \: acceleration \: ac \: from}

 \:   \tt : \implies \: ac =  \frac{ {v}^{2} }{r}  = r {w}^{2}

 \\  \\ \bullet  \to \tt \: you \: may \: whichever \: expression \: for \: centripetal \: force \: is \: more \: convenient.

 \tt \bullet \: centripetal \: force \: is \: always \: perpendicular \: to \: the \: path \: and \: pointing \: to \: the

 \tt \: the \: centre \: of \: curvature \: because \: ac \: is \: perpedicular \: to \: the \: velocity \: and \: pointing \: to \: the \:

 \tt \: centre \: of \: curvature.

 \:  \\: \implies \tt \: note \: that \: if \: you \: solve \: the \: first \: expression \: for \: we \: get :

 \displaystyle\sf\: r =  \frac{m {v}^{2} }{f}

Similar questions