Physics, asked by ANNONYMOUS1, 1 year ago

define completely inelastic collision. Show that during completely inelastic collision always there is loss of kinetic energy.

Answers

Answered by himanshutiwari2
4
An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved due to the action of internal friction.

In collisions of macroscopic bodies, some kinetic energy is turned into vibrational energy of the atoms, causing a heating effect, and the bodies are deformed.

hope it will help u
if then pls mark it as brainiest
Answered by BrainlyBAKA
1

\huge\mathbb\green{\mid{\fbox{\underline{Answer :}}}\mid}\\\\

From conservation of momentum

{m}_{1	}{v }_{1} \\

 = ({m}_{1} +{m }_{2} ){v}-{2}→{v}_{2} \\

= \frac{{m}_{1}}{{m}_{1} +{m}_{2}}×{ v }_{1}

The ratio of kinetic energies before & after collision is

\frac{{KE}_{f}}{{KE}_{i}} \\

= \frac{\frac{1}{2}×({m}_{1}+{m}_{2}) × (\frac{{m}_{1}}{{m}_{1} +{m}_{2}}×{ v }_{1})²}{\frac{1}{2}×{m}_{1}{v²}_{1}} \\

 = \frac{{m}_{1}}{{m}_{1} +{m}_{2}}{×}{ v }_{1}

The fraction of kinetic energy lost is

\frac{{KE}_{i} – {KE}_{f}}{{KE}_{i}} \\

 = \frac{1 –( \frac{{m}_{1}}{{m}_{1} +{m}_{2}})×{ v }_{1}}{{KE}_{i}} × {KE}_{i} \\

 = \frac{{m}_{2}}{{m}_{1} +{m}_{2}}×{ v }_{1}

Hence energy always loss in inelastic collision.

\\\\\\

HOPE IT HELPS

PLEASE MARK ME BRAINLIEST ☺️

https://brainly.in/question/38235119

Similar questions