Define critical angle and determine the refractive index of benzene if the critical angle is 45°
Answers
Answered by
3
Hey friend
here is your answer
Critical angle can be defined as the angle of incidence when the angle of refraction is 90°.
[tex]refractive \: \: index ( n ) = \frac{1}{ \sin(c) } \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ={ \sqrt{2} } \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = { \sqrt{2} }
glad to help you
hope it helps
thank you.
here is your answer
Critical angle can be defined as the angle of incidence when the angle of refraction is 90°.
[tex]refractive \: \: index ( n ) = \frac{1}{ \sin(c) } \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ={ \sqrt{2} } \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = { \sqrt{2} }
glad to help you
hope it helps
thank you.
Answered by
0
Explanation:
- Answer is 1 .49 . I think it is helpful to you
Attachments:
Similar questions