define electromotive force.how is it measured by photometric methods?
Answers
Explanation:
Electromotive force, abbreviated emf (denoted {\displaystyle {\mathcal {E}}} {\mathcal {E}} and measured in volts),[1] is the electrical action produced by a non-electrical source.[2] A device that converts other forms of energy into electrical energy (a "transducer"),[3] such as a battery (converting chemical energy) or generator (converting mechanical energy),[2] provides an emf as its output.[3] Sometimes an analogy to water "pressure" is used to describe electromotive force.[4] (The word "force" in this case is not used to mean force of interaction between bodies, as may be measured in pounds or newtons.)
In electromagnetic induction, emf can be defined around a closed loop of conductor as the electromagnetic work that would be done on an electric charge (an electron in this instance) if it travels once around the loop.[5] For a time-varying magnetic flux linking a loop, the electric potential scalar field is not defined due to a circulating electric vector field, but an emf nevertheless does work that can be measured as a virtual electric potential around the loop.[6]
In the case of a two-terminal device (such as an electrochemical cell) which is modeled as a Thévenin's equivalent circuit, the equivalent emf can be measured as the open-circuit potential difference or "voltage" between the two terminals. This potential difference can drive an electric current if an external circuit is attached to the terminals.
HOPE THIS WILL HELP YOU DEAR
Answer:
Electrometive force
Electromotive force, abbreviated emf, is the electrical action produced by a non-electrical source. A device that converts other forms of energy into electrical energy, such as a battery or generator, provides an emf as its output. Sometimes an analogy to water "pressure" is used to describe electromotive force.
How to measure
The electric charge that has been separated creates an electric potential difference that can be measured with a voltmeter between the terminals of the device. The magnitude of the emf for the battery (or other source) is the value of this 'open circuit' voltage.