Physics, asked by AryanB6580, 1 year ago

Define Fermi energy.

Answers

Answered by harshiniarasu
0
The Fermi energy is a concept in quantum mechanics usually referring to the energy difference between the highest and lowest occupied single-particle states in a quantum system of non-interacting fermions at absolute zero temperature. In a Fermi gas, the lowest occupied state is taken to have zero kinetic energy, whereas in a metal, the lowest occupied state is typically taken to mean the bottom of the conduction band.

Confusingly, the term "Fermi energy" is often used to refer to a different yet closely related concept, the Fermi level (also called electrochemical potential).[note 1] There are a few key differences between the Fermi level and Fermi energy, at least as they are used in this article:

The Fermi energy is only defined at absolute zero, while the Fermi level is defined for any temperature.

The Fermi energy is an energy difference(usually corresponding to a kinetic energy), whereas the Fermi level is a total energy level including kinetic energy and potential energy.

The Fermi energy can only be defined for non-interacting fermions (where the potential energy or band edge is a static, well defined quantity), whereas the Fermi level (the electrochemical potential of an electron) remains well defined even in complex interacting systems, at thermodynamic equilibrium.

Since the Fermi level in a metal at absolute zero is the energy of the highest occupied single particle state, then the Fermi energy in a metal is the energy difference between the Fermi level and lowest occupied single-particle state, at zero-temperature.

Answered by emmanuelsony04
0

Fermi energy is often defined as the highest occupied energy level of a material at absolute zero temperature

Similar questions