define inertia and pressure ? what is the formula for intertia pressure? state the unit of pressure
Answers
What is the Law of Inertia?
Law of inertia, also known as Newton’s first law of motion states that
An object will continue to be in the state of rest or in a state of motion unless an external force acts on it.
We have read about the Aristotle fallacy, as per which an external force is always required to keep a body in motion. This was proved wrong when the concept of inertia came into the picture. With the following two experiments, Galileo established the concept of inertia.
Understand the Laws of Motion and the concepts behind these theories by watching this intriguing video.
3,34,603
Galileo’s Free Fall Experiment
The most accepted theory of motion in Western philosophy, prior to the Renaissance, was the Aristotelian theory which stated that “In the absence of external power, all objects would come to rest that moving objects only continue to move so long as there is a power inducing them to do so. ” Despite its general acceptance, the Aristotelian theory was discredited by several notable philosophers. Later, Galileo refined the theory of inertia.
How did Galileo Explain Inertia?
Galileo hypothesized that a falling object gains an equal amount of velocity in equal intervals of time. This also means that the speed increases at a constant rate as it falls. But, there was a problem in testing this hypothesis: it was impossible for Galileo to observe the object’s free-falling motion and at the time, technology was unable to record such high speeds. As a result, Galileo attempted to decelerate its motion by replacing the falling object with a ball rolling down an inclined plane. Since free-falling is basically equivalent to a completely vertical ramp, he assumed that a ball rolling down a ramp would speed up in the exact same way as a falling ball would.
Using a water clock, Galileo measured the time it took for the rolling ball to reach a known distance down the inclined plane. After several trials, it was observed that the time it took for the ball to roll the entire length of the ramp was equal to double the amount of time it took for the same ball to only roll a quarter of the distance. In short, if you were to double the amount of distance the ball traveled, it would travel four times as far. Through this experiment, Galileo concluded that
If an object is released from rest and gains speed at a steady rate (as it would in free-fall or when rolling down an inclined plane), then the total distance, s, traveled by the object is proportional to the time squared needed for that travel.
Mathematically, this is expressed as
s∝t2
Experiment
Inertia
Galileo used two inclined planes, as shown in the figure, and made the ball roll down the first plane and climb up the other. He concluded that, if the planes are smooth, the final height achieved by the ball is nearly the same as the height through which it rolls from the first plane. In the second experiment, the slope of the second inclined plane was decreased and the ball was made to roll again. Here, the ball still reaches the same height, and in doing so, it travels a longer distance. According to the observation, when the slope of the second plane was decreased to zero, that is, the plane was made horizontal, the ball was supposed to travel an infinite distance, that is the motion never ceases. Although due to the opposing friction of the plane, the object does come to rest after a finite distance but under ideal conditions, when there is no friction, the ball would continue to move with constant velocity on the horizontal plane. With this conclusion, the statements of Aristotle were proved wrong. He concluded that it was incorrect to assume that a net force was needed to keep a body in uniform motion and the state of rest and state of uniform motion as equivalent.
HOPE IT HELPS YOU .
Answer:
INERTIA:
Inertia is a property or tendency of every object to resist any change in its state of rest or of uniform Force and Laws of Motion. It is measured by the mass of an object. The heavier the object, the greater will be its inertia.
PRESSURE:
Pressure is the force applied by one object on the another. Force applied on the object is perpendicular to the surface of the object per unit area. It is represented by P.
Pressure is the force applied by one object on the another. Force applied on the object is perpendicular to the surface of the object per unit area. It is represented by P.The pressure is articulated as force per unit area articulated as
Pressure is the force applied by one object on the another. Force applied on the object is perpendicular to the surface of the object per unit area. It is represented by P.The pressure is articulated as force per unit area articulated asPressure formula1
Pressure is the force applied by one object on the another. Force applied on the object is perpendicular to the surface of the object per unit area. It is represented by P.The pressure is articulated as force per unit area articulated asPressure formula1Where,
Pressure is the force applied by one object on the another. Force applied on the object is perpendicular to the surface of the object per unit area. It is represented by P.The pressure is articulated as force per unit area articulated asPressure formula1Where,F = Force applied by the body (N)
Pressure is the force applied by one object on the another. Force applied on the object is perpendicular to the surface of the object per unit area. It is represented by P.The pressure is articulated as force per unit area articulated asPressure formula1Where,F = Force applied by the body (N)A = Total area of the object (m2)
IF MY ANSWER HELPS YOU THE N PLEASE MAKE IT AS THE BRAINLIEST ANSWER.