define one ohm law
Answers
Answer:1)Ohm’s Law and Resistance Ohm’s law states that the voltage or potential difference between two points is directly proportional to the current or electricity passing through the resistance, and directly proportional to the resistance of the circuit. The formula for Ohm’s law is V=IR. This relationship between current, voltage, and relationship was discovered by German scientist Georg Simon Ohm. Let us learn more about Ohms Law, Resistance, and its applications.
2)Ohm’s Law Definition Most basic components of electricity are voltage, current, and resistance. Ohm’s law shows a simple relation between these three quantities. Ohm’s law states that the current through a conductor between two points is directly proportional to the voltage across the two points.
3)ohm's law Ohm’s Law Formula Voltage= Current× Resistance
V= I×R
V= voltage, I= current and R= resistance
The SI unit of resistance is ohms and is denoted by Ω
This law is one of the most basic laws of electricity. It helps to calculate the power, efficiency, current, voltage, and resistance of an element of an electrical circuit.
4)Applications of Ohm’s Law Ohm’s law helps us in determining either voltage, current or impedance or resistance of a linear electric circuit when the other two quantities are known to us. It also makes power calculation simpler.
Explanation:please mark me brainiest
Explanation:
Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance,[1] one arrives at the usual mathematical equation that describes this relationship:[2]
{\displaystyle I={\frac {V}{R}},}I={\frac {V}{R}},
where I is the current through the conductor in units of amperes, V is the voltage measured across the conductor in units of volts, and R is the resistance of the conductor in units of ohms. More specifically, Ohm's law states that the R in this relation is constant, independent of the current.[3] Ohm's law is an empirical relation which accurately describes the conductivity of the vast majority of electrically conductive materials over many orders of magnitude of current. However some materials do not obey Ohm's law, these are called non-ohmic.
The law was named after the German physicist Georg Ohm, who, in a treatise published in 1827, described measurements of applied voltage and current through simple electrical circuits containing various lengths of wire. Ohm explained his experimental results by a slightly more complex equation than the modern form above (see § History below).
In physics, the term Ohm's law is also used to refer to various generalizations of the law; for example the vector form of the law used in electromagnetics and material science:
{\displaystyle \mathbf {J} =\sigma \mathbf {E} ,}\mathbf {J} =\sigma \mathbf {E} ,
where J is the current density at a given location in a resistive material, E is the electric field at that location, and σ (sigma) is a material-dependent parameter called the conductivity. This reformulation of Ohm's law is due to Gustav Kirchhoff.[4]