Physics, asked by dhonidharamveer, 10 months ago

Define projectile. Find the relation for Time of flight, maximum height, Horizontal range and maximum horizontal
range when projectile fired at some angle with horizontal.​

Answers

Answered by EuphoricEpitome
8

What is projectile motion ?

Projectile motion is a form of Motion experienced by an object or particle that is thrown near the Earth's surface and moves along a curved path under the action of gravity only .

The graph for projectile motion :

\setlength{ \unitlength}{30} \begin{picture}(6,6)  \put(2,2){ \vector(0,1){5}} \put(2,2){ \vector(1,0){5}} \qbezier(2.1,2)(4.2,9)(6,2) \put(4,2){ \line(0,1){0.3}}\put(4,2.5){ \line(0,1){0.3}}\put(4,3){ \line(0,1){0.3}}\put(4,3.5){ \line(0,1){0.3}}\put(4,4){ \line(0,1){0.3}}\put(4,4.5){ \line(0,1){0.3}}\put(4,5){ \line(0,1){0.3}}\put(4,5.2){ \line(0,1){0.3}}\put(4.1,4){ $ \bf{ Maximum }$ }\put(4.1,3.7){ $ \bf{ height }$ }\put(3.5,1.5){ $ \bf{ Range \: (R) }$ }\put(2.2,6.5){ $ \bf{ Trajectory}$ } \qbezier(2.3,2.5)(2.5,2.5)(2.6,2)\put(2.5,2.3){ $ \bf { \theta } $ }\put(2.7,4){ \line( - 1, - 1){0.4}}\put(2.7,4){ \line(1, - 2){0.2}}\end{picture}

Terms related to projectile motion :

\leadsto \purple{Trajectory} - The path of a projectile is called Trajectory.

\leadsto\purple{Horizontal \:Range} - The Horizontal Range of a Projectile is defined as the horizontal displacement of a projectile when the displacement of the projectile in the y-direction is zero.

\leadsto \purple{Vertical\: Range} - Vertical range is the maximum vertical distance a projectile can reach. It is the same as the maximum vertical displacement denoted by (H). It is also known as Maximum height .

Important formulas related to projectile motion :

→ The initial velocity of projectile can be resolved into two mutually perpendicular components .

u_{x} = u cos \theta

u_y = u sin \theta

\setlength{ \unitlength}{30} \begin{picture}(6,6)  \put(2,2){ \vector(0,1){2.5}} \put(2,2){ \vector(1,0){2.5}} \qbezier(2.4,2.3)(2.5,2.5)(3,2) \put(2.1,2){\vector(1,1){2}}\put(2.7,2.3){ $ \bf { \theta } $ }\put( 3, 1.5){ $  \tt{ u \cos \theta  } $ }\put( 1,3 ){ $ \bf{ u \sin \theta  } $ }\put(4 ,3.9 ){ $ \bf{ u   } $ }\end{picture}

 \leadsto T (time\:of\:flight) = \dfrac{(2u sin \theta)}{g}

\leadsto R (Horizontal \: range) = \dfrac{u^2 (2 sin\theta cos \theta)}{g}

 \leadsto H ( Maximum \: height) = \dfrac{u^2 sin^2 \theta}{2g}

* Note -  \theta = angle \: of \: projection

 u = initial \: velocity

Similar questions