Physics, asked by prabhjotkaur82682, 5 months ago

define surface density.obtain expression for force on a charge q due to continuous distribution of charges over a surface​

Answers

Answered by ritamriyu123
2

Electric field due to infinite plane sheet in xy- plane         E=2ϵoσ  k^         

Electric field due to infinite plane sheet in xy- plane         E=2ϵoσ  k^         Work done in moving the charge from A to B        W=qV

Electric field due to infinite plane sheet in xy- plane         E=2ϵoσ  k^         Work done in moving the charge from A to B        W=qVW=q(E.AB)                        

Electric field due to infinite plane sheet in xy- plane         E=2ϵoσ  k^         Work done in moving the charge from A to B        W=qVW=q(E.AB)                         AB=B−A=a(i^−2j^+6k^)−a(i^+2j^+3k^)

Electric field due to infinite plane sheet in xy- plane         E=2ϵoσ  k^         Work done in moving the charge from A to B        W=qVW=q(E.AB)                         AB=B−A=a(i^−2j^+6k^)−a(i^+2j^+3k^)⟹  AB=a(−4j^+3k^)

Electric field due to infinite plane sheet in xy- plane         E=2ϵoσ  k^         Work done in moving the charge from A to B        W=qVW=q(E.AB)                         AB=B−A=a(i^−2j^+6k^)−a(i^+2j^+3k^)⟹  AB=a(−4j^+3k^)From (1),  we  get         W=q(2ϵoσk^.a(−4j^+3k^))=q2ϵoσa(0+3)      

Electric field due to infinite plane sheet in xy- plane         E=2ϵoσ  k^         Work done in moving the charge from A to B        W=qVW=q(E.AB)                         AB=B−A=a(i^−2j^+6k^)−a(i^+2j^+3k^)⟹  AB=a(−4j^+3k^)From (1),  we  get         W=q(2ϵoσk^.a(−4j^+3k^))=q2ϵoσa(0+3)      ⟹W=2ϵo3

hope it helps

Similar questions