Science, asked by kenge, 3 months ago

Define turbulent flow. In a commercial pipe the flow of water, mass density is
1000 kg/m² and kinematie viscosity is 1x10‐6 m²/sec having roughness 0.12 mm yields an average shear stress at pipe boundary 600 N/m². Find the value of ratio roughness to thickness of laminar sub-layer for the pipe and the nature of the
surface as per Nikuradse experiment.​

Answers

Answered by itzsecretagent
107

\underline{\underline{\maltese\: \: \textbf{\textsf{Answer}}}}

 \sf{Re =	\frac{VD}{v}}

 \sf{τ = μ \frac{dv}{dy}}

 \sf{ \frac{du}{dy} =  \frac{u}{y}} (Linear ,commercial  \: pipe)

 \sf{∴ τo = μ \frac{μ}{y}}

 \sf{ \frac{τo}{e} = \frac{μ}{ρ} \times  \frac{u}{y}  = v \frac{u}{y} }

 \sf{Shear \:  velocity = V1}

 \sf{V1² =	 \frac{τo}{ρ} }

 \sf{= v \frac{u}{y}}

 \sf{ \frac{u}{V1} =	 \frac{V1 × y}{v}= Re}

 \sf{ \frac{V1y1}{v} = 11.6  \: at \:  y = δ1(experimental \:  result)}

 \sf{ \frac{V1δ1}{v} = 11.6}

 \sf{V1 × δ1 = 11.6 ×  {10}^{ - 6}  m² / s}

 \sf{V1 =	 \sqrt{ \frac{τo}{ρ}} =  \sqrt{ \frac{600}{1000}} = 0.6 }

 \sf{δ1 =	 \frac{11.6 ×  {10}^{ - 6}}{ \sqrt{0.6} } = 1.5 ×  {10}^{ - 5}   m}

 \sf{= 1.5 ×  {10}^{ - 2}  mm}

 \sf{ \frac{k}{δ1}=	 \frac{0.12}{1.5 \times  {10}^{ - 2} }= 8	}

Similar questions