Define unit vector with example. A vector of magnitude equal to first sum of last three digits of your
registration number towards negative y-axis. Find the scalar and vector product of this vector with an
another vector of magnitude equal to sum of last two digit of your date of birth towards negative z-axis. Last three digits of reg no. is 394 and date of birth is 2001
Answers
Explanation:
A unit vector is a vector whose length is one. The vector i is the unit vector in the direction of the positive x-axis. In coordinates, we can write i=(1,0). Similarly, the vector j is the unit vector in the direction of the positive y-axis: j=(0,1).
Explanation:
A unit vector is something that we use to have both direction and magnitude. Moreover, it denotes direction and uses a 2-D (2 dimensional) vector because it is easier to understand. In addition, we can plot it on a graph. Besides, in this topic, we will discuss unit vector and unit vector formula, its derivation and solved examples.
Unit Vector
In mathematics, unit vector refers to the normal vector space (often a spatial vector) of length 1. Moreover, we use a lowercase letter with a circumflex, or ‘hat’ (Pronunciation “i-hat”). Usually, we use the term direction vector to describe a unit vector to represent the spatial vector. Besides, we denote them as d. Moreover, 2D spatial directions represent this way are numerically equivalent to the points on the unit circle.