Math, asked by aanchalshrivastav, 1 month ago

define write the heron's formula, for finding the area of a triangle​

Answers

Answered by sia1234567
6

  \huge\sf{answer}

 \color{gold}area =  \green{\sqrt{s(s - a)(s - b)(s - c)}}

  \color{blue}\dagger \: where \:  \pink{s} \: donates \: semi \: perimeter \:

  \red{\dagger \: semi \: perimeter \: is \:obtained \: by \: adding \: sides }\\  \star \: side \mapsto \: a \\  \star \: side \: \mapsto \: b \\  \star \: side \: \mapsto \: c \\ \hookrightarrow \:  and \: then \: divinding \: the \: result \: by \: 2

  \purple{\circ \: for \: example}

1. \: determine \: the \: area \: of \: a \: triangle \: whose \: sides \: are -   \\ \star \: 5 \: cm \:  \\  \star \: 13 \: cm \\  \star \: 12 \: cm

 \huge  \: \bold{solution}

The sides of a triangle are :- a = 5 cm , b = 13 cm , c = 12 cm

s = a + b + c / 2

s = 5 + 12 + 13 / 2 = 15 cm

 \bold{area =  \sqrt{s(s - a)(s - b)(s - c)}}

 =   \sqrt{15 \times 10 \times 3 \times 2}  \\  =  \sqrt{900 }  \\   \bold{ = {30 \: cm}^{2}}

________________________________

Answered by Eutuxia
28

\rightarrow \bf \underline{Heron's \: Formula :}

  • The heron's formula was created by Heron of Alexandria. He was a Greek Engineer and Mathematician in 10-18 AD.
  • Heron's formula is used for finding the Area of Triangles, with 3 sides.
  • Heron's Formula is applicable for all triangles.
  • The only requirement for this Formula is that 3 sides are required for calculation.

↪ Formula :

  • For finding the Area, we must first find the Semi-Perimeter of the Triangle. And to find the Semi-Perimeter, we must use the formula of :

\boxed{\bf Semi-Perimeter = \dfrac{a + b + c}{2} }

  • Next, to find the Area, we have to use the formula of :

\boxed{\bf Area  = \sqrt{s    (s-a)   (s-b) (s-c) } }

⇒ Now, an example is solved below to find the Area of the Triangle.

_____________________

Question :

  • Find the area of the triangle whose sides measure 10 cm, 17 cm, and 21 cm.

Answer :

Now,

{\sf Semi-Perimeter = \dfrac{a + b + c}{2} }

                           { \sf =  \dfrac{10 + 17 + 21}{2} }

                           { \sf =  \dfrac{48}{2} }

                           \sf = 24

{ \sf  Area  = \sqrt{s  (s-a) (s-b)  (s-c) } }

       \sf { = \sqrt{24  (24-10) (24-17)  (27-21) } }

       \sf { = \sqrt{(24) \times  (14) \times (7) \times  (3) } }

       \sf { = \sqrt{7056} }

       \sf = 84

Therefore, the Area of the Triangle is 84 cm².

       

Similar questions