Math, asked by Anonymous, 19 days ago

Definite integration:

\boxed{\displaystyle \frac{\int\limits^\pi_0 (1+\cos \theta) (1-\cos \theta) \,d\theta}{\int\limits_0^\pi (\sqrt{1+\cos\theta})(\sqrt{1-\cos \theta})\, d\theta}}

Answers

Answered by mathdude500
17

\large\underline{\sf{Solution-}}

Given integral is

\displaystyle \dfrac{\displaystyle\int ^\pi_0 (1+\cos \theta) (1-\cos \theta) \,d\theta}{\displaystyle\int ^\pi_0 (\sqrt{1+\cos\theta})(\sqrt{1-\cos \theta})\, d\theta} \\

Now, Consider

\rm \: \displaystyle\int ^\pi_0(1 + cos\theta)(1 - cos\theta) \: d\theta

\rm \: \displaystyle\int ^\pi_0(1 -  {cos}^{2}\theta) \: d\theta

\rm \: \displaystyle\int ^\pi_0({sin}^{2}\theta) \: d\theta

\rm \:  =  \: \dfrac{1}{2} \displaystyle\int ^\pi_0 \: 2{sin}^{2}\theta \: d\theta

\rm \:  =  \: \dfrac{1}{2} \displaystyle\int ^\pi_0 \: (1 - cos2\theta )\: d\theta

\rm \:  =  \: \dfrac{1}{2}\bigg[\theta - \dfrac{sin2\theta}{2} \bigg] ^\pi_0

\rm \:  =  \: \dfrac{1}{2}\bigg[(\pi - 0) - \dfrac{sin2\pi - sin0}{2} \bigg]

\rm \:  =  \: \dfrac{1}{2}\bigg[\pi - \dfrac{0 - 0}{2} \bigg]

\rm \:  =  \: \dfrac{1}{2}\bigg[\pi - 0 \bigg]

\rm \:  =  \: \dfrac{\pi}{2}

Hence,

\rm\implies \:\boxed{\tt{ \rm \: \displaystyle\int ^\pi_0(1 + cos\theta)(1 - cos\theta) \: d\theta \:  =  \:  \frac{\pi}{2} \: }} \\

Now, Consider

\rm \: \displaystyle\int ^\pi_0 \:  \sqrt{(1 + cos\theta)} \:  \sqrt{(1 - cos\theta)} \: d\theta

\rm \: =  \:  \displaystyle\int ^\pi_0 \:  \sqrt{(1 + cos\theta)(1 - cos\theta)} \: d\theta

\rm \: =  \:  \displaystyle\int ^\pi_0 \:  \sqrt{1 - cos^{2} \theta} \: d\theta

\rm \: =  \:  \displaystyle\int ^\pi_0 \:  \sqrt{sin^{2} \theta} \: d\theta

\rm \: =  \:  \displaystyle\int ^\pi_0 \:   |sin\theta|  \: d\theta

As we know, sinx > 0 in first and second quadrant.

So, using this

\rm \: =  \:  \displaystyle\int ^\pi_0 \:   sin\theta \: d\theta

\rm \: =  \:   - \bigg(cos\theta \bigg)  ^\pi_0 \:

\rm \: =  \:   - \bigg(cos\pi - cos0 \bigg)

\rm \: =  \:   - \bigg( - 1- 1\bigg)

\rm \: =  \:   - \bigg( -2\bigg)

\rm \: =  \:   2

So,

\rm\implies \:\boxed{\tt{ \rm \: \displaystyle\int ^\pi_0 \:  \sqrt{(1 + cos\theta)} \:  \sqrt{(1 - cos\theta)} \: d\theta = 2 \: }} \\

Now, Consider the given integral,

\displaystyle \dfrac{\displaystyle\int ^\pi_0 (1+\cos \theta) (1-\cos \theta) \,d\theta}{\displaystyle\int ^\pi_0 (\sqrt{1+\cos\theta})(\sqrt{1-\cos \theta})\, d\theta} \\

So, on substituting the values, evaluated above, we get

\rm \:  =  \: \dfrac{\dfrac{\pi}{2} }{ \:  \: 2 \:  \: }

\rm \:  =  \: \dfrac{\pi}{4}

Hence,

\rm\implies \:\boxed{\tt{ \displaystyle \dfrac{\displaystyle\int ^\pi_0 (1+\cos \theta) (1-\cos \theta) \,d\theta}{\displaystyle\int ^\pi_0 (\sqrt{1+\cos\theta})(\sqrt{1-\cos \theta})\, d\theta} =  \frac{\pi}{4}}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULAE USED

\rm \:  {cos}^{2}x +  {sin}^{2}x = 1 \\

\rm \:  \sqrt{ {x}^{2} } =  |x|

\displaystyle\int\rm cosx \: dx = sinx \:  +  \: c \\

\displaystyle\int\rm sinx \: dx =  -  \: cosx \:  +  \: c \\

\displaystyle\int\rm k \: dx =  kx \:  +  \: c \\

\rm \: sin \: n\pi \:  =  \: 0 \: where \: n \: is \: integer \\

\rm \: cos \: n\pi \:  =  \:  {( - 1)}^{n}  \: where \: n \: is \: integer \\

Similar questions