Math, asked by subhranshukarn94, 1 month ago

degree of b(x) = -6x+3x²+2x³-5x³​

Answers

Answered by shwethaprakash812198
0

Step-by-step explanation:

1/2/3/47is a ehhsududhshue

Answered by mufiahmotors
2

Answer:

QuestioN - 1 :-

Write the coefficient of x² :-

4x² + 7x + 5

⠀⠀

2x³ - 3x² + 5x - 2

⠀⠀

AnsweR :-

⠀⠀

1) 4x² + 7x + 5

⠀⠀

The coefficient of x² is 4.

⠀⠀

2) 2x³ - 3x² + 5x - 2

⠀⠀

The coefficient of x² is (-3).

⠀⠀

QuestioN - 2 :-

⠀⠀

Write the Degree :-

⠀⠀

5x³ + 2x² -3x -1

⠀⠀

4x² + 2x +3

⠀⠀

AnsweR :-

⠀⠀

1) 5x³ + 2x² - 3x -1

⠀⠀

The degree of this polynomial is 3.

⠀⠀

2) 4x² + 2x + 3

⠀⠀

The degree of this polynomial is 2.

⠀⠀

QuestioN - 3 :-

⠀⠀

Find the value of 5x - 4x² + 3 at ,

x = 0

x = -1

x = -2

x = 3

⠀⠀

The value of 5x - 4x² + 3 at x = 0

⠀⠀

\begin{gathered} \sf \: 5x - 4 {x}^{2} + 3 \\ \\ \implies \: \sf \: 5 \times 0 - 4 \times {0}^{2} + 3 \\ \\ \implies \sf \: 0 - 0 + 3 \\ \\ \implies \sf \: 3\end{gathered}

5x−4x

2

+3

⟹5×0−4×0

2

+3

⟹0−0+3

⟹3

⠀⠀

The value of 5x - 4x² + 3 at x = -1

⠀⠀

\begin{gathered} \sf \: 5x - 4 {x}^{2} + 3 \\ \\ \implies \sf \: 5 \times ( - 1) - 4 \times {( - 1)}^{2} + 3 \\ \\ \implies \sf \: - 5 - 4 \times 1 + 3 \\ \\ \implies \sf \: - 5 - 4 + 3 \\ \\ \implies \sf \: - 9 + 3 \\ \\ \implies \sf \: - 5\end{gathered}

5x−4x

2

+3

⟹5×(−1)−4×(−1)

2

+3

⟹−5−4×1+3

⟹−5−4+3

⟹−9+3

⟹−5

⠀⠀

The value of 5x - 4x² + 3 at x = -2

⠀⠀

\begin{gathered} \sf5x - 4 {x}^{2} + 3 \\ \\ \implies \sf \: 5 \times ( - 2) - 4 {( - 2)}^{2} + 3 \\ \\ \implies \sf \: - 10 - 4 \times 4 + 3 \\ \\ \implies \sf \: - 10 - 16 + 3 \\ \\ \implies \sf \: - 26 + 3 \\ \\ \implies \sf \: - 23\end{gathered}

5x−4x

2

+3

⟹5×(−2)−4(−2)

2

+3

⟹−10−4×4+3

⟹−10−16+3

⟹−26+3

⟹−23

⠀⠀

The value of 5x - 4x² + 3 at x = 3

⠀⠀

\begin{gathered} \sf5x - 4 {x}^{2} + 3 \\ \\ \implies \sf \: 5 \times 3 - 4 \times {3}^{2} + 3 \\ \\ \implies \sf \: 15 - 4 \times 9 + 3 \\ \\ \implies \sf \: 15 - 36 + 3 \\ \\ \implies \sf \: 18 - 36 \\ \\ \implies \sf \: - 18\end{gathered}

5x−4x

2

+3

⟹5×3−4×3

2

+3

⟹15−4×9+3

⟹15−36+3

⟹18−36

⟹−18

⠀⠀

QuestioN - 4 :-

⠀⠀

Find the zeros of the following polynomials :-

⠀⠀

p(x) = x + 5

p(x) = x - 5

⠀⠀

AnsweR :-

⠀⠀

1) p(x) = x + 5

⠀⠀

To find the zeros of polynomial equate the polynomial to zero ,

⠀⠀

\begin{gathered} \sf \: p(x) = 0 \\ \\ \implies \sf \: x + 5 = 0 \\ \\ \implies \sf \: x = - 5\end{gathered}

p(x)=0

⟹x+5=0

⟹x=−5

2) p(x) = x - 5

⠀⠀

\begin{gathered} \sf \: p(x) = 0 \\ \\ \implies \sf \: x - 5 = 0 \\ \\ \implies \sf \: x = 5\end{gathered}

p(x)=0

⟹x−5=0

⟹x=5

QuestioN - 5 :-

⠀⠀

Factories ths following →

⠀⠀

12x² - 7x + 1

3x² -x - 4

AnsweR :-

⠀⠀

1) 12x² - 7x + 1

⠀⠀

\begin{gathered} \sf \implies \: 12 {x}^{2} - 7x + 1 \\ \\ \implies \sf \: 12 {x}^{2} - 4x - 3x + 1 \\ \\ \implies \sf \: 4x(3x - 1) - 1(3x - 1) \\ \\ \implies \sf \: (4x - 1)(3x - 1)\end{gathered}

⟹12x

2

−7x+1

⟹12x

2

−4x−3x+1

⟹4x(3x−1)−1(3x−1)

⟹(4x−1)(3x−1)

⠀⠀

2) 3x² - x - 4

⠀⠀

\begin{gathered} \implies \sf \: 3 {x}^{2} - x - 4 \\ \\ \implies \sf \: 3 {x}^{2} + 3x - 4x - 4 \\ \\ \implies \sf3x(x + 1) - 4(x + 1) \\ \\ \implies \sf(3x - 4)(x + 1)\end{gathered}

⟹3x

2

−x−4

⟹3x

2

+3x−4x−4

⟹3x(x+1)−4(x+1)

⟹(3x−4)(x+1)

Step-by-step explanation:

hope it will help you

Similar questions