degree of b(x) = -6x+3x²+2x³-5x³
Answers
Step-by-step explanation:
1/2/3/47is a ehhsududhshue
Answer:
QuestioN - 1 :-
Write the coefficient of x² :-
4x² + 7x + 5
⠀⠀
2x³ - 3x² + 5x - 2
⠀⠀
AnsweR :-
⠀⠀
1) 4x² + 7x + 5
⠀⠀
The coefficient of x² is 4.
⠀⠀
2) 2x³ - 3x² + 5x - 2
⠀⠀
The coefficient of x² is (-3).
⠀⠀
QuestioN - 2 :-
⠀⠀
Write the Degree :-
⠀⠀
5x³ + 2x² -3x -1
⠀⠀
4x² + 2x +3
⠀⠀
AnsweR :-
⠀⠀
1) 5x³ + 2x² - 3x -1
⠀⠀
The degree of this polynomial is 3.
⠀⠀
2) 4x² + 2x + 3
⠀⠀
The degree of this polynomial is 2.
⠀⠀
QuestioN - 3 :-
⠀⠀
Find the value of 5x - 4x² + 3 at ,
x = 0
x = -1
x = -2
x = 3
⠀⠀
The value of 5x - 4x² + 3 at x = 0
⠀⠀
\begin{gathered} \sf \: 5x - 4 {x}^{2} + 3 \\ \\ \implies \: \sf \: 5 \times 0 - 4 \times {0}^{2} + 3 \\ \\ \implies \sf \: 0 - 0 + 3 \\ \\ \implies \sf \: 3\end{gathered}
5x−4x
2
+3
⟹5×0−4×0
2
+3
⟹0−0+3
⟹3
⠀⠀
The value of 5x - 4x² + 3 at x = -1
⠀⠀
\begin{gathered} \sf \: 5x - 4 {x}^{2} + 3 \\ \\ \implies \sf \: 5 \times ( - 1) - 4 \times {( - 1)}^{2} + 3 \\ \\ \implies \sf \: - 5 - 4 \times 1 + 3 \\ \\ \implies \sf \: - 5 - 4 + 3 \\ \\ \implies \sf \: - 9 + 3 \\ \\ \implies \sf \: - 5\end{gathered}
5x−4x
2
+3
⟹5×(−1)−4×(−1)
2
+3
⟹−5−4×1+3
⟹−5−4+3
⟹−9+3
⟹−5
⠀⠀
The value of 5x - 4x² + 3 at x = -2
⠀⠀
\begin{gathered} \sf5x - 4 {x}^{2} + 3 \\ \\ \implies \sf \: 5 \times ( - 2) - 4 {( - 2)}^{2} + 3 \\ \\ \implies \sf \: - 10 - 4 \times 4 + 3 \\ \\ \implies \sf \: - 10 - 16 + 3 \\ \\ \implies \sf \: - 26 + 3 \\ \\ \implies \sf \: - 23\end{gathered}
5x−4x
2
+3
⟹5×(−2)−4(−2)
2
+3
⟹−10−4×4+3
⟹−10−16+3
⟹−26+3
⟹−23
⠀⠀
The value of 5x - 4x² + 3 at x = 3
⠀⠀
\begin{gathered} \sf5x - 4 {x}^{2} + 3 \\ \\ \implies \sf \: 5 \times 3 - 4 \times {3}^{2} + 3 \\ \\ \implies \sf \: 15 - 4 \times 9 + 3 \\ \\ \implies \sf \: 15 - 36 + 3 \\ \\ \implies \sf \: 18 - 36 \\ \\ \implies \sf \: - 18\end{gathered}
5x−4x
2
+3
⟹5×3−4×3
2
+3
⟹15−4×9+3
⟹15−36+3
⟹18−36
⟹−18
⠀⠀
QuestioN - 4 :-
⠀⠀
Find the zeros of the following polynomials :-
⠀⠀
p(x) = x + 5
p(x) = x - 5
⠀⠀
AnsweR :-
⠀⠀
1) p(x) = x + 5
⠀⠀
To find the zeros of polynomial equate the polynomial to zero ,
⠀⠀
\begin{gathered} \sf \: p(x) = 0 \\ \\ \implies \sf \: x + 5 = 0 \\ \\ \implies \sf \: x = - 5\end{gathered}
p(x)=0
⟹x+5=0
⟹x=−5
2) p(x) = x - 5
⠀⠀
\begin{gathered} \sf \: p(x) = 0 \\ \\ \implies \sf \: x - 5 = 0 \\ \\ \implies \sf \: x = 5\end{gathered}
p(x)=0
⟹x−5=0
⟹x=5
QuestioN - 5 :-
⠀⠀
Factories ths following →
⠀⠀
12x² - 7x + 1
3x² -x - 4
AnsweR :-
⠀⠀
1) 12x² - 7x + 1
⠀⠀
\begin{gathered} \sf \implies \: 12 {x}^{2} - 7x + 1 \\ \\ \implies \sf \: 12 {x}^{2} - 4x - 3x + 1 \\ \\ \implies \sf \: 4x(3x - 1) - 1(3x - 1) \\ \\ \implies \sf \: (4x - 1)(3x - 1)\end{gathered}
⟹12x
2
−7x+1
⟹12x
2
−4x−3x+1
⟹4x(3x−1)−1(3x−1)
⟹(4x−1)(3x−1)
⠀⠀
2) 3x² - x - 4
⠀⠀
\begin{gathered} \implies \sf \: 3 {x}^{2} - x - 4 \\ \\ \implies \sf \: 3 {x}^{2} + 3x - 4x - 4 \\ \\ \implies \sf3x(x + 1) - 4(x + 1) \\ \\ \implies \sf(3x - 4)(x + 1)\end{gathered}
⟹3x
2
−x−4
⟹3x
2
+3x−4x−4
⟹3x(x+1)−4(x+1)
⟹(3x−4)(x+1)
Step-by-step explanation:
hope it will help you