Math, asked by choudharyneha361, 1 year ago

degree of homogenous function f(x,y)=√x+√y/x+y​

Answers

Answered by surajpandey31081
8

Answer:

the degree of homogeneous function is 1

Answered by pulakmath007
1

Degree of the homogenous function = - 1/2

Given :

The function

\displaystyle \sf{f(x,y) =  \frac{ \sqrt{x} +  \sqrt{y}  }{x + y}   }

To find :

The degree of homogenous the function

Concept :

A function f(x,y) is said to be a homogenous function of degree n if

f(tx,ty) = tⁿ f(x,y) where t > 0

Solution :

Step 1 of 2 :

Write down the given function

Here the given function is

\displaystyle \sf{f(x,y) =  \frac{ \sqrt{x} +  \sqrt{y}  }{x + y}   }

Step 2 of 2 :

Find degree of homogenous the function

Take t > 0

Now

\displaystyle \sf{f(tx,ty)   }

\displaystyle \sf{ =  \frac{ \sqrt{tx} +  \sqrt{ty}  }{tx + ty}   }

\displaystyle \sf{ =  \frac{ \sqrt{t} ( \sqrt{x} +  \sqrt{y})  }{t(x + y)}   }

\displaystyle \sf{ =  \frac{  {t}^{ \frac{1}{2} }  ( \sqrt{x} +  \sqrt{y})  }{t(x + y)}   }

\displaystyle \sf{ =  \frac{  {t}^{ \frac{1}{2}  - 1}  ( \sqrt{x} +  \sqrt{y})  }{(x + y)}   }

\displaystyle \sf{ =  \frac{  {t}^{  - \frac{1}{2} }  ( \sqrt{x} +  \sqrt{y})  }{(x + y)}   }

\displaystyle \sf{ = {t}^{  - \frac{1}{2}} \frac{   ( \sqrt{x} +  \sqrt{y})  }{(x + y)}   }

\displaystyle \sf{ =  {t}^{ -  \frac{1}{2} } f(x,y)   }

\displaystyle \sf{ \therefore \:  \: f(tx,ty)  =  {t}^{ -  \frac{1}{2} } f(x,y)    }

So degree of the homogenous function = - 1/2

Similar questions