History, asked by Rojbanas, 1 month ago

Deklerasyon ng mga prinsipyo at patakaran ng mga estado

Answers

Answered by yashchauhan786
0

Answer:

ok

Explanation:

Appropriate Question :-

The denominator of a fraction is 3 more than the numerator. If 2 is added to the numerator and 5 is added to the denominator, the fraction becomes \bf \dfrac{1}{2}

2

1

. Find the fraction.

[Note : The wrong part in the question is the fraction is ½. ]

Given :-

The denominator of a fraction is 3 more than the numerator.

2 is added to the numerator and 5 is added to the denominator.

The fraction becomes \sf \dfrac{1}{2}

2

1

.

To Find :-

What is the fraction.

Solution :-

Let,

\mapsto \rm{\bold{Numerator =\: x}}↦Numerator=x

\mapsto \rm{\bold{Denominator =\: (x + 3)}}↦Denominator=(x+3)

Then, the original fraction will be :

\leadsto \sf \dfrac{Numerator}{Denominator}⇝

Denominator

Numerator

\leadsto \bf{\dfrac{x}{x + 3}}⇝

x+3

x

\pink{\bigstar\: \: \: {\sf\bold{\underline{According\: to\: the\: question\: :-}}}}★

Accordingtothequestion:−

\begin{gathered}\implies \sf \dfrac{Numerator + 2}{Denominator + 5} =\: New\: Fraction\\\end{gathered}

Denominator+5

Numerator+2

=NewFraction

\implies \sf \dfrac{x + 2}{x + 3 + 5} =\: \dfrac{1}{2}⟹

x+3+5

x+2

=

2

1

\implies \sf \dfrac{x + 2}{x + 8} =\: \dfrac{1}{2}⟹

x+8

x+2

=

2

1

\pink{\bigstar} \: \: {\bf{By\: doing\: cross\: multiplication\: we\: get\: :-}}★Bydoingcrossmultiplicationweget:−

\implies \sf 2(x + 2) =\: 1(x + 8)⟹2(x+2)=1(x+8)

\implies \sf 2x + 4 =\: x + 8⟹2x+4=x+8

\implies \sf 2x - x =\: 8 - 4⟹2x−x=8−4

\implies \sf\bold{\purple{ x =\: 4}}⟹x=4

Hence, the required original fraction is :

\longrightarrow \sf Original\: Fraction =\: \dfrac{x}{x + 3}⟶OriginalFraction=

x+3

x

\longrightarrow \sf Original\: Fraction =\: \dfrac{4}{4 + 3}⟶OriginalFraction=

4+3

4

\longrightarrow \sf\bold{\red{Original\: Fraction =\: \dfrac{4}{7}}}⟶OriginalFraction=

7

4

{\small{\bold{\underline{\therefore\: The\: fraction\: is\: \dfrac{4}{7}\: .}}}}

∴Thefractionis

7

4

.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

VERIFICATION :-

\leadsto \sf \dfrac{x + 2}{x + 3 + 5} =\: \dfrac{1}{2}⇝

x+3+5

x+2

=

2

1

\leadsto \sf \dfrac{x + 2}{x + 8} =\: \dfrac{1}{2}⇝

x+8

x+2

=

2

1

By putting x = 4 we get,

\leadsto \sf \dfrac{4 + 2}{4 + 8} =\: \dfrac{1}{2}⇝

4+8

4+2

=

2

1

\leadsto \sf \dfrac{\cancel{6}}{\cancel{12}} =\: \dfrac{1}{2}⇝

12

6

=

2

1

\leadsto \sf \bold{\green{\dfrac{1}{2} =\: \dfrac{1}{2}}}⇝

2

1

=

2

1

Hence, Verified.

Similar questions