Math, asked by nisharpari31gmailcom, 11 months ago

Denominator of fraction is 3 more than thrice it's numerator. Denominator becomes 12times the numerator and the denominator is reduced by 3 .Find the fraction ​

Answers

Answered by Anonymous
22

Appropriate Question :

  • Denominator of fraction is 3 more than thrice it's numerator. Denominator becomes 12 times the numerator and the denominator and denominator is reduced by 3 .Find the fraction.

Given :

  • Denominator of fraction is 3 more than thrice it's numerator.
  • Denominator becomes 12 times the numerator and the denominator and numerator are reduced by 3.

To Find :

  • The Fraction.

Solution :

Let the numerator of the fraction be x.

Let the denominator of the fraction be y.

Fraction = \bold{\dfrac{x}{y}}

Case 1 :

The denominator is 3 more than thrice the numerator.

Equation :

\sf{\longrightarrow{y=3x+3}}

\sf{\longrightarrow{y-3=3x}}

\sf{\longrightarrow{\dfrac{y-3}{3}=x\:\:\:\:\:(1)}}

Case 2 :

Denominator becomes 12 times of numerator, denominator is reduced by 3.

Numerator = (x - 3)

Denominator = (y - 3)

Equation :

\sf{\longrightarrow{(y-3)=12(x-3)}}

\sf{\longrightarrow{y-3=12x-36}}

\sf{\longrightarrow{y-3=12\:\Big(\dfrac{y-3}{3}\Big)-36}}

\bold{\big[From\:equation\:(1)\:x\:=\:\dfrac{y-3}{3}\big]}

\sf{\longrightarrow{y-3=\dfrac{12y-36}{3}-36}}

\sf{\longrightarrow{y-3=\dfrac{12y-36-108}{3}}}

\sf{\longrightarrow{3(y-3) =12y-36-108}}

\sf{\longrightarrow{3y-9=12y-36-108}}

\sf{\longrightarrow{3y-9=12y-144}}

\sf{\longrightarrow{3y-12y=-144+9}}

\sf{\longrightarrow{-9y=-135}}

\sf{\longrightarrow{y=\dfrac{-135}{-9}}}

\sf{\longrightarrow{y=15}}

Substitute, y = 15 in equation (1),

\sf{\longrightarrow{x=\dfrac{y-3}{3}}}

\sf{\longrightarrow{x=\dfrac{15-3}{3}}}

\sf{\longrightarrow{x=\dfrac{12}{3}}}

\sf{\longrightarrow{x=4}}

\large{\boxed{\bold{Numerator\:of\:fraction\:=\:x\:=\:4}}}

\large{\boxed{\bold{Denominator\:of\:fraction\:=\:y\:=\:15}}}

\large{\boxed{\bold{Fraction\:=\:\dfrac{x}{y}=\dfrac{4}{15}}}}

Answered by Sanshine0812
1

 \small \mathsf{let \: the \: x \: be \: numertor \: and \: y \: be \: denominator \:  } \\  \large \therefore  \mathsf{fraction \:  =  \frac{x}{y} } \\  \small \mathsf{according \: to \: 1st \: condition}  \\  \large  \therefore \mathsf \: {y = 3x+ 3} \\ \mathsf{ 3x - y =  - 3 -  -  -  - (i)} \\  \small \mathsf{according \: to \: 2nd \: condition} \\  \therefore \mathsf{(y - 3) = 12(x - 3)} \\\therefore \mathsf{y - 3 = 12x - 36} \\   \mathsf{12x - y = 33 -  -  - -  (ii)} \\ \small \mathsf{subtracting \: equation\: (i)\: from \: (ii) \: we \: get \: } \\ 12x - y  = 33 \\ 3x - y  \:  \:  \:  \: =  - 3 \\  -  \:  \:  \:  \:  \:  \:   \:  \:   +  \:  \:   \:  \:  \:  \:   +  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ 9x = 36 \\  \large \mathsf \therefore  \boxed{ \:   x = 4} \\  \mathsf{put \: x = 4 \: in \: equation \: (i)} \\ 3(4) - y =  - 3 \\ 12 - y =  - 3 \\  - y =  - 3 - 12 \\  - y =  - 15 \\ \large \mathsf \therefore  \boxed{y = 15} \\  \therefore  \mathsf {fraction \:  =  \frac{x}{y}  = } \:  \boxed {\frac{4}{15} }

Stay happy :D

Similar questions