depoist=Rs 1000p/m in 3years at 8% p.a, Find maturity value *
Answers
Given :
TheAmount deposited per month = p = Rs 1000
The rate of interest applied = r = 7 %
The maturity value = Rs 70675
The number of months = n
To Find :
The value of n
Solution :
According to question
∵ Interest = principal × \dfrac{n(n+1)}{2}2n(n+1) × \dfrac{RT}{100}100RT
where n = number of months
R = rate of interest
T = \dfrac{1}{12}121
So, Interest = Rs 1000 × \dfrac{n(n+1)}{2}2n(n+1) × \dfrac{7\times 1}{100\times 12}100×127×1
Or, Interest = Rs 1000 × \dfrac{n(n+1)}{2}2n(n+1) × \dfrac{7}{1200}12007
Or, Interest = \dfrac{n(n+1)}{2}2n(n+1) × \dfrac{70}{12}1270
∴ Interest = {n(n+1)}n(n+1) × \dfrac{35}{12}1235
Again
Maturity value = Interest + monthly deposit money × number of month
70675 = {n(n+1)}n(n+1) × \dfrac{35}{12}1235 + Rs 1000 × n
Or, 70675 × 12 = 35 n ( n + 1 ) + 1000 n × 12
or, 848100 = 35 n² + 35 n + 12000 n
Or, 35 n² + 12035 n - 848100 = 0
Or, 7 n² + 2407 n - 169620 = 0
Solving this quadratic equation
n = \dfrac{-2407\pm \sqrt{2407^{2}-4\times 7\times (-169620))}}{2\times 7}
2×7−2407±24072−4×7×(−169620))
So, n = 60 , - 403
So, Number of months = n = 60
Hence, The value of n is 60 Answer