Physics, asked by HeerY1084, 9 months ago

derice the equation of maximum height for projectile motion ​

Answers

Answered by singhjaspal8456
5

Answer:

hope the answer will help you ☺️☺️..

Explanation:

An object launched into projectile motion will have an initial launch angle anywhere from 0 to 90 degrees. ... The maximum height of an object, given the initial launch angle and initial velocity is found with:h=v2isin2θi2g h = v i 2 sin 2 ⁡ θ i 2 g .

Answered by amansharma264
9

EXPLANATION.

 \sf  : \implies \: derive \: the \: equation \: of \: maximum \: height \: for \: projectile \: motion

  \sf  : \implies \: { \underline{in \: y \: direction}} \\  \\    \sf  : \implies \:  u_{y} = u \sin( \theta)  \\  \\  \sf  : \implies \:  a_{y} =  - g \:  = for \: a \to \: b \:  \\  \\  \sf  : \implies \:  v_{y} = 0 \\  \\   \sf  : \implies \: from \: newton \: 1st \: equation \: of \: kinematics

 \sf  : \implies \:  v_{y} =  u_{y} +  a_{y}t \\  \\   \sf  : \implies \: 0 = (u \sin \theta)  - gt \\  \\   \sf  : \implies \: (u \sin \theta) = gt \\  \\  \sf  : \implies \: t \:  =  \frac{u \sin( \theta) }{g}

  \sf  : \implies \: from \: newton \: 3rd \: equation \: of \: motion \\  \\  \sf  : \implies \:  v {}^{2} _{y} = u {}^{2}_{y} + 2a_{y}d_{y} \\  \\   \sf  : \implies \:  {0}^{2} - (u \sin  \theta) {}^{2} = 2( - g) h_{m} \\  \\    \sf  : \implies \:  h_{m} =  \frac{u {}^{2}  { \sin {}^{2} ( \theta) }^{} }{2g}

  \sf  : \implies \: { \underline{in \: x \: direction}} \\  \\  \sf  : \implies \:  u_{x} = u \cos\theta \\  \\   \sf  : \implies \:  a_{x} = 0 \\  \\   \sf  : \implies \: t \:  =  \frac{2u \sin( \theta) }{g}  \\  \\  \sf  : \implies \:  d_{x} = r =  u_{x}.t \\  \\  \sf  : \implies \: r \:  = u \cos( \theta) \times  \frac{2u \sin( \theta) }{g} \\  \\  \sf  : \implies \: r \:  =  \frac{ {u}^{2} \sin( 2\theta)  }{g}

 \sf  : \implies \: { \underline{additional \: information}}  \\  \\  \sf  : \implies \: if \: we \: move \: directly \: from \: a \to \: c \:  \\  \\  \sf  : \implies \:  u_{y} = u \sin( \theta) \\  \\  \sf  : \implies \:  a_{y} =  - g \\  \\  \sf  : \implies \:  d_{y} = 0 \\  \\  \sf  : \implies \: from \: newton \: second \: equation \: of \: kinematics

 \sf  : \implies \: s \:  = ut +  \dfrac{1}{2} a {t}^{2}  \\  \\  \sf  : \implies \: 0 = u \sin( \theta)t -  \frac{1}{2} g {t}^{2} \\  \\    \sf  : \implies \: t \:  =  \frac{2u \sin( \theta) }{g}

Attachments:
Similar questions