Derine tan (x+y) = (tanx + tan y)/
(1- tanx tany)
using this derive tan (x+y+z)
Answers
Question :
Derive tan (x+y) = (tan x + tan y)/(1-tan x*tan y)
ANSWER
Required to derive : -
tan (x+y) = (tan x + tan y)/(1-tan x*tan y)
Formulae used : -
sin (A+B) = sin A*cos B + cos A*sin B
cos (A+B) = cos A*cos B - sin A*sin B
Derivation : -
tan (x+y) = (tan x + tan y)/(1-tan x*tan y)
From LHS part let's derive the RHS part
Consider the LHS part;
tan (x+y)
We know that;
- tan x = (sin x)/(cos x)
[sin (x+y)]/[cos (x+y)]
Using the formulae;
- sin (A+B) = sin A*cos B + cos A*sin B
- cos (A+B) = cos A*cos B - sin A*sin B
[sin x*cos y + cos x*sin y]/[cos x*cos y - sin x*sin y]
Here,
We need to apply a bit of logic !
We need to convert the ratios in numerator & denominator into tan . so, let's divide the numerator & denominator with (cos x*cos y)
This implies;
([sin x*cos y + cos x*sin y]/[cos x*cos y])/([cos x*cos y - sin x*sin y]/[cos x*cos y])
([sin x*cos y]/[cos x*cos y]+[cos x*sin y]/[cos x*cos y])/([cos x*cos y]/[cos x*cos y]-[sin x*sin y]/[cos x*cos y])
([sin x]/[cos x]+[sin y]/[cos y])/(1-[sin x]/[cos x]*[sin y]/[sin y])
Since,
- (sin @)/(cos @) = tan @
(tan x + tan y)/(1-tan x*tan y)
Hence Derived !
Question :
Derive the identity for tan (x+y+z)
ANSWER
Required to derive : -
- The identity for tan (x+y+z)
Formula used : -
tan (A+B) = (tan A + tan B)/(1-tan A*tan B)
Derivation : -
tan (x+y+z)
tan([x+y]+z)
Here,
a = x+y
b = z
Using the formula;
- tan (A+B) = (tan A + tan B)/(1-tan A*tan B)
tan ([x+y]+z) =
(tan [x+y] + tan z)/(1-tan [x+y]*tan z)
Here,
Again we need to apply the formula once again because we have tan (x+y)
This implies;
([tan x + tan y]/[1-tan x*tan y] + tan z)/(1-[tan x + tan y]/[1-tan x*tan y]*tan z)
([tan x + tan y]/[1-tan x*tan y] + tan z)/(1-[tan z(tan x + tan y)]/[1-tan x*tan y])
([tan x + tan y]/[1-tan x*tan y] + tan z)/(1-[tan x*tan z + tan y*tan z]/[1-tan x*tan y])
Taking the LCM respectively in numerator and denominator
([tan x + tan y + tan z{1-tan x*tan y}]/[1-tan x*tan y])/([1{1-tan x*tan y}-{tan x*tan z + tan y*tan z}]/[1-tan x*tan y])
(1-tan x*tan y) get's cancelled in both numerator and denominator
([tan x + tan y + tan z{1-tan x*tan y}]/[1])/([1{1-tan x*tan y}-{tan x*tan z + tan y*tan z}]/[1])
(tan x + tan y + tan z - tan x*tan z*tan y )/(1-tan x*tan y - tan x*tan z - tan y*tan z)
Hence derived !
tan (x+y+z) = (tan x + tan y + tan z - tan x*tan z*tan y )/(1-tan x*tan y - tan x*tan z - tan y*tan z)
Answer:
Solution :
Given tanx = 2/3 --- ( 1 )
tany = 1/5 ----( 2 )
Now ,
tan( x + y )
= [ tan x + tan y ]/( 1 - tanx * tan y )
= [ 2/3 + 1/5 ]/[ 1 - ( 2/3 )( 1/5 ) ]
= ( 10 + 3 )/( 15 - 2 )
= 13/13
= 1
Therefore ,
tan ( x + y ) = tan 45°
=> x + y = 45°
•••••