Derivate by first principal
F(x)= √tanx
Answers
Answer:
Step-by-step explanation:
f(x) = tan √x
Then f'(x) = lim.h tends to 0. [f(x+h) - f(x)]/h
= lim.h tends to 0 [tan√(x+h) - tan√x]/h
=lim.h tends to 0 [{sin√(x+h)/cos√(x+h)} - {sin√x/cos√x]/h
=Lim h tends to 0[{sin√(x+h)cos√x-cos√(x+h).sin √x}/cos√(x+h).cos√x] / h
=Lim h tends to 0 [sin {√(x+h) - √x} / cos√(x+h).cosx] / h
=Lim h tends to 0 [sin √x{(√(1 + h/h/x)^2x ) -1} /cos √(x+h).cos√x]. /h
=Lim h tends to 0[ sin √x{1 + 1/2. h/x + (1/2)(1/2 -1)(h/x)^2+……… -1}]/h.cos√(x+h).cos√x.
=Lim h tends to 0[ sin{h/2√x + terms containing higher powers of h/x}]/(h/2√x).2√x.cos√(x+h).cos√x
=Lim h tends to 0[ sin{(h/2√x) + terms containing higher powers of h/x}/(h/2√x).2√x.cos√(x+h).cos√x
=1/{2√x.cos^2 √x} +c
=(sex^2 √x)/(2√x) +c.
HEYA MATE✌️✌️✌️
========
solution-:
========
◆Refer the attachment◆