Physics, asked by rinkipandey5a, 10 months ago

derivate kinetic eqution​

Answers

Answered by bimlaaira
1

Answer:

Expression for  Kinetic energy(Ek)-

Consider an object with mass m, moving with initial velocity u. Let a force F, act on it causing a displacement s, along the direction of force and accelaration. Let the object attain final velocity v.

We know F = m x a ------------------------ 1

By position velocity relation we have,

V2 = u2 + 2as

or s = v2 -u2 / 2a ----------------------------- 2

The work done by the force

W = F x s -------------------------------------- 3

Substituting 1 and 2 in 3

W = (m x a) x (v2 - u2/2a)

W = m/2 (v2 - u2)

W = 1/2 mv2 - 1/2 mu2 -------------------- 4

For an object to be at rest in the beggining, u = 0

Therefore, W = 1/2 mv2

W = Ek ( Ek = kinetic energy)

Therefore, Ek = 1/2 mv2

Answered by saanvigrover2007
7

 \mathfrak{Derivation \: of \:Kinetic \: Energy}

\mathsf{Things \: to \: know \: before\: Derivation}

 \mathsf{\implies Work done = Fs}

 \mathsf{\implies v² = u² + 2as}

 \mathsf{\implies s = \frac{v² - u²}{2a}}

 \mathsf{\implies u = 0 m/s \: for \:a \: body \: starting \: from \: rest}

 \mathsf{\implies Work \: Done = \: Energy}

 \mathsf{\implies Kinetic \: Energy \: is \: also \: written \: as \: E_k}

 \mathsf{\implies Force = mass \: × \: acceleration \: = ma}

\mathsf{Derivation}

 \mathsf{\hookrightarrow E_k = Work done = Fs }

 \mathsf{\hookrightarrow \: = \: Fs \: = ma × s }

 \mathsf{\hookrightarrow E_k = m × \frac{v² - u²}{2a} × a}

 \mathsf{\hookrightarrow E_k = \frac{1}{2}mv²}

Similar questions