Math, asked by vanipahuja140805, 13 hours ago

derivate
1 \div  \sqrt{x}
by first principle

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = \dfrac{1}{ \sqrt{x} }

So,

\rm :\longmapsto\:f(x + h) = \dfrac{1}{ \sqrt{x + h} }

So, by definition of First Principle, we have

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0}\rm  \frac{f(x + h) - f(x)}{h}

So, on substituting the values, we get

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0}\rm  \frac{1}{h}\bigg[\dfrac{1}{ \sqrt{x + h} }  -  \frac{1}{ \sqrt{x} } \bigg]

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0}\rm  \frac{1}{h}\bigg[\dfrac{ \sqrt{x}  -  \sqrt{x + h} }{ \sqrt{x + h}  \:  \sqrt{x} }\bigg]

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{1}{ \sqrt{x + h}  \:  \sqrt{x} }  \times \displaystyle\lim_{h \to 0}\rm  \frac{ \sqrt{x} -  \sqrt{x + h}  }{h}

\rm \:  =  \: \dfrac{1}{ \sqrt{x}  \:  \sqrt{x} }  \times \displaystyle\lim_{h \to 0}\rm  \frac{ \sqrt{x} -  \sqrt{x + h}  }{h} \times  \frac{ \sqrt{x}  +  \sqrt{x + h} }{ \sqrt{x} +  \sqrt{x + h}  }

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}} \\

So, using this, we get

\rm \:  =  \: \dfrac{1}{x}  \times \displaystyle\lim_{h \to 0}\rm  \frac{ {( \sqrt{x} )}^{2} -  {( \sqrt{x + h}) }^{2}  }{h( \sqrt{x}  +  \sqrt{x + h})}

\rm \:  =  \: \dfrac{1}{x}  \times \displaystyle\lim_{h \to 0}\rm  \frac{x - (x + h)}{h( \sqrt{x}  +  \sqrt{x + h})}

\rm \:  =  \: \dfrac{1}{x}  \times \displaystyle\lim_{h \to 0}\rm  \frac{x - x - h}{h( \sqrt{x}  +  \sqrt{x + h})}

\rm \:  =  \: \dfrac{1}{x}  \times \displaystyle\lim_{h \to 0}\rm  \frac{ - 1}{( \sqrt{x}  +  \sqrt{x + h})}

\rm \:  =  \: \dfrac{1}{x}  \times \dfrac{ - 1}{( \sqrt{x}  +  \sqrt{x + 0})}

\rm \:  =  \: \dfrac{1}{x}  \times \dfrac{ - 1}{ \sqrt{x}  +  \sqrt{x}}

\rm \:  =  \: \dfrac{1}{x}  \times \dfrac{ - 1}{2\sqrt{x}}

\rm \:  =  \:\dfrac{ - 1}{2x\sqrt{x}}

Hence,

\rm\implies \:\boxed{\tt{  \frac{d}{dx} \frac{1}{ \sqrt{x} } \:  =  -  \:  \frac{1}{2x \sqrt{x} } \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions