Physics, asked by shilpi9, 1 year ago

derivation of Bernoulli theorem

Answers

Answered by Anonymous
13
Hi

Here is your answer,

                                      BERNOULLI'S THEOREM 


When a incompressible non-viscous fluid flows in a stream line motion then at every point the total energy (K.E,P.E, Pressure energy) per unit volume remains constant that is 

                       { P +1/2ev
² + egh } = constant 


Consider a tube of flows from X to Y


                     A  > A  → V  > V

By equation of continuity with AV = constant 
  
                       α 1/A

Where the fluid flows from x to y, the fluid gains KE as V₂ > V

Energy/ unit ve = constant 

Pressure energy 

  KE and PE      [ PE = POTENTIAL ENERGY , KE = KINETIC ENERGY ]

∴  Gain in KE = 1/2 mv₂² - 1/2 mv₁² ----------------(1)


As h₁ > h₂  PEx > PEy

The fluid losses its potential energy when flows from X to Y

∴ Loss in P.E is mgh - mgh

At point X, displacement and pressure are in same direction. So, therefore work doe is +ve ( work done by the fluid)

At point Y, displacement and pressure are in opposite direction. So, therefore work done is -ve

When fluid flows from x to y it losses pressure Energy

∴ But by equation of continuity 

          AV = AV = AV

  Loss of pressure energy 

          ( P₁ - P₂) AV Δt

As AV Δt  = m/e

          
∴ loss of pressure

Energy is ( P
 - Pm/e ----------- (3)


∴ Net gain in energy = loss in energy 

1/2mv
²₂ - 1/2mv²₁ = (mgh - mgh ) + (P - P) m/ρ ( all the m's will get cancel)

1/2 v₂² - 1/2 v₂² = gh - gh  + (P - P₂₂)/ρ        ( multiplying ρ with given equation)

1/2 
ρv₂² - 1/2 ρv₁² = egh - egh + P - P

1/2 ev
₂² + egh + P = 1/2 ev₁² + egh + P

 
                     P + 1/2ev + egh = constant 


Hope it helps you !
                           



Similar questions