Derivation of conditional probability density function
Answers
Answered by
6
Suppose X and Y are continuous random variables with joint probability density function f(x,y) and marginal probability density functions fX(x) and fY(y), respectively. Then, the conditional probability density function of Y given X = x is defined as:
h(y|x)=f(x,y)fX(x)
provided fX(x) > 0. The conditional mean of Y given X = x is defined as:
E(Y|x)=∫∞−∞yh(y|x)dy
The conditional variance of Y given X = x is defined as:
Var(Y|x)=E{[Y−E(Y|x)]2|x}=∫∞−∞[y−E(Y|x)]2h(y|x)dy
or, alternatively, using the usual shortcut:
Var(Y|x)=E[Y2|x]−[E(Y|x)]2=[∫∞−∞y2h(y|x)dy]−μ2Y|x
h(y|x)=f(x,y)fX(x)
provided fX(x) > 0. The conditional mean of Y given X = x is defined as:
E(Y|x)=∫∞−∞yh(y|x)dy
The conditional variance of Y given X = x is defined as:
Var(Y|x)=E{[Y−E(Y|x)]2|x}=∫∞−∞[y−E(Y|x)]2h(y|x)dy
or, alternatively, using the usual shortcut:
Var(Y|x)=E[Y2|x]−[E(Y|x)]2=[∫∞−∞y2h(y|x)dy]−μ2Y|x
Similar questions