Derivation of lens formula for convex lens with magnification
Answers
Answered by
23
OF1=Focal length=f
OA=object distance=u
OA'=image distance=v
Triangle OAB similar to Triangle OA'B'
angleBAO=angle B'A'O=90°
so, angle AOB=angleA'B'O
A'B'/AB=OA'/OA ---------------(1)
Triangle OCF1 similar to Triangle F1A'B'
A'B'/OC=A'F1/OF1
OC=AB
A'B'/AB=A'F1/OF1=OF1-OA'/OF1
A'B'/AB=OF1-OA'/OF1---------------(2)
from eqn 1 and 2 we get
OA'/OA=OF1 - OA'/OF1
-v/-u= -f-(-v)/-f
v/u= f+v/f
-vf=-uf+uv
on dividing both sides by uvf we get
1/u=1/v+1/f
1/v-1/u=1/f
magnification m=height of image /height of object or m=v/u
OA=object distance=u
OA'=image distance=v
Triangle OAB similar to Triangle OA'B'
angleBAO=angle B'A'O=90°
so, angle AOB=angleA'B'O
A'B'/AB=OA'/OA ---------------(1)
Triangle OCF1 similar to Triangle F1A'B'
A'B'/OC=A'F1/OF1
OC=AB
A'B'/AB=A'F1/OF1=OF1-OA'/OF1
A'B'/AB=OF1-OA'/OF1---------------(2)
from eqn 1 and 2 we get
OA'/OA=OF1 - OA'/OF1
-v/-u= -f-(-v)/-f
v/u= f+v/f
-vf=-uf+uv
on dividing both sides by uvf we get
1/u=1/v+1/f
1/v-1/u=1/f
magnification m=height of image /height of object or m=v/u
Attachments:
Similar questions