derivation of logx by abinito method
Answers
Answered by
0
Let us suppose that the function is of the form
y=f(x)=logaxy=f(x)=logax
First we take the increment or small change in the function:
y+Δy=loga(x+Δx)Δy=loga(x+Δx)−yy+Δy=loga(x+Δx)Δy=loga(x+Δx)−y
Putting the value of function y=logaxy=logax in the above equation, we get
Δy=loga(x+Δx)−logaxΔy=loga(x+Δxx)Δy=loga(1+Δxx)Δy=loga(x+Δx)−logaxΔy=loga(x+Δxx)Δy=loga(1+Δxx)
Dividing both sides by ΔxΔx, we get
ΔyΔx=1Δxloga(1+Δxx)ΔyΔx=1Δxloga(1+Δxx)
Multiplying and dividing the right hand side by xx, we have
⇒ΔyΔx=1xxΔxloga(1+Δxx)⇒ΔyΔx=1xloga(1+Δxx)xΔx⇒ΔyΔx=1xxΔxloga(1+Δxx)⇒ΔyΔx=1xloga(1+Δxx)xΔx
Taking the limit of both sides as Δx→0Δx→0, we have
⇒limΔx→0ΔyΔx=limΔx→01xloga(1+Δxx)xΔx⇒limΔx→0ΔyΔx=1xlimΔx→0loga(1+Δxx)xΔx⇒limΔx→0ΔyΔx=limΔx→01xloga(1+Δxx)xΔx⇒limΔx→0ΔyΔx=1xlimΔx→0loga(1+Δxx)xΔx
Consider Δxx=u⇒xΔx=1uΔxx=u⇒xΔx=1u, as Δx→0Δx→0 then u→0u→0, we get
⇒dydx=1xlimu→0loga(1+u)1u⇒dydx=1xlimu→0loga(1+u)1u
Using the relation from the limit limx→0(1+x)1x=elimx→0(1+x)1x=e, we have
dydx=1xloga(e)⇒dydx=1xlna⇒ddx(logax)=1xlnadydx=1xloga(e)⇒dydx=1xlna⇒ddx(logax)=1xlna
Example: Find the derivative of
y=f(x)=log10x2y=f(x)=log10x2
We have the given function as
y=log10x2y=log10x2
Differentiating with respect to variable xx, we get
dydx=ddxlog10x2dydx=ddxlog10x2
Using the rule, ddx(logax)=1xlnaddx(logax)=1xlna, we get
dydx=1x2ln10ddx(x2)⇒dydx=2xx2ln10⇒dydx
y=f(x)=logaxy=f(x)=logax
First we take the increment or small change in the function:
y+Δy=loga(x+Δx)Δy=loga(x+Δx)−yy+Δy=loga(x+Δx)Δy=loga(x+Δx)−y
Putting the value of function y=logaxy=logax in the above equation, we get
Δy=loga(x+Δx)−logaxΔy=loga(x+Δxx)Δy=loga(1+Δxx)Δy=loga(x+Δx)−logaxΔy=loga(x+Δxx)Δy=loga(1+Δxx)
Dividing both sides by ΔxΔx, we get
ΔyΔx=1Δxloga(1+Δxx)ΔyΔx=1Δxloga(1+Δxx)
Multiplying and dividing the right hand side by xx, we have
⇒ΔyΔx=1xxΔxloga(1+Δxx)⇒ΔyΔx=1xloga(1+Δxx)xΔx⇒ΔyΔx=1xxΔxloga(1+Δxx)⇒ΔyΔx=1xloga(1+Δxx)xΔx
Taking the limit of both sides as Δx→0Δx→0, we have
⇒limΔx→0ΔyΔx=limΔx→01xloga(1+Δxx)xΔx⇒limΔx→0ΔyΔx=1xlimΔx→0loga(1+Δxx)xΔx⇒limΔx→0ΔyΔx=limΔx→01xloga(1+Δxx)xΔx⇒limΔx→0ΔyΔx=1xlimΔx→0loga(1+Δxx)xΔx
Consider Δxx=u⇒xΔx=1uΔxx=u⇒xΔx=1u, as Δx→0Δx→0 then u→0u→0, we get
⇒dydx=1xlimu→0loga(1+u)1u⇒dydx=1xlimu→0loga(1+u)1u
Using the relation from the limit limx→0(1+x)1x=elimx→0(1+x)1x=e, we have
dydx=1xloga(e)⇒dydx=1xlna⇒ddx(logax)=1xlnadydx=1xloga(e)⇒dydx=1xlna⇒ddx(logax)=1xlna
Example: Find the derivative of
y=f(x)=log10x2y=f(x)=log10x2
We have the given function as
y=log10x2y=log10x2
Differentiating with respect to variable xx, we get
dydx=ddxlog10x2dydx=ddxlog10x2
Using the rule, ddx(logax)=1xlnaddx(logax)=1xlna, we get
dydx=1x2ln10ddx(x2)⇒dydx=2xx2ln10⇒dydx
Similar questions