Math, asked by nakkasriraj, 9 months ago

derivation of sin^nx sin nx​

Answers

Answered by BrainlyTornado
8

ANSWER:

n\ sin^{n-1}x(sin \ nx \ cos \ x + cos\ nx\ sin \ x)

GIVEN:

 \sin^nx \sin nx

TO DIFFERENTIATE:

 \sin^nx \sin nx

FORMULAE:

 \dfrac{d}{dx} (uv )= uv' + vu'

 \dfrac{d}{dx} x^n = nx^{n-1}

 \dfrac{d}{dx}  \sin x =  \cos x

 \dfrac{d}{dx} kx =  k

EXPLANATION:

{\sin nx   \dfrac{d}{dx} \sin^nx +  \sin^nx\dfrac{d}{dx} \sin nx }

{ \sin nx \left( n \sin^{n-1} x\right)  \dfrac{d}{dx}  \sin x+ \sin^nx\cos nx  \dfrac{d}{dx} nx}

{ n\sin nx \: \sin^{n-1} x \cos x+n \sin^nx\cos nx }

n\ sin^{n-1}x(sin \ nx \ cos \ x + cos\ nx\ sin \ x)

SOME MORE FORMULAE:

{\boxed{\begin{minipage}{5cm} \bold{$\dfrac{d}{dx}$(constant) = 0}\\ \\ \bold{$\dfrac{d}{dx}cos \ x=-sin \ x$}\\ \\ \bold{$\dfrac{d}{dx}tan \ x=sec^2 \ x$}\\\\\bold{$\dfrac{d}{dx}sec \ x=sec\ x\ tan\ x$}\\ \\ \bold{$\dfrac{d}{dx}cosec \ x= - cosec \ x\ cot \ x$}\\ \\ \bold{$\dfrac{d}{dx}cot \ x=-cosec^2\ x$}\end{minipage}}

Similar questions