DERIVATION of SUM OF nTH term of an A.P.!
CLASS- 10
CHAPTER: ARITHMETIC PROGRESSIONS (A.P.)
Sirinben:
sn=n/2(2a+n-1(d)
Answers
Answered by
4
Derivation for the Sum of Arithmetic Progression, S
S=a1+a2+a3+a4+...+anS=a1+a2+a3+a4+...+an
S=a1+(a1+d)+(a1+2d)+(a1+3d)+...+[a1+(n−1)d]S=a1+(a1+d)+(a1+2d)+(a1+3d)+...+[a1+(n−1)d] → Equation (1)
S=an+an−1+an−2+an−3+...+a1S=an+an−1+an−2+an−3+...+a1
S=an+(an−d)+(an−2d)+(an−3d)+...+[an−(n−1)d]S=an+(an−d)+(an−2d)+(an−3d)+...+[an−(n−1)d] → Equation (2)
Add Equations (1) and (2)
2S=(a1+an)+(a1+an)+(a1+an)+(a1+an)+...+(a1+an)2S=(a1+an)+(a1+an)+(a1+an)+(a1+an)+...+(a1+an)
2S=n(a1+an)2S=n(a1+an)
S=n2(a1+an)S=n2(a1+an)
Substitute an = a1 + (n - 1)d to the above equation, we have
S=n2{a1+[a1+(n−1)d]}S=n2{a1+[a1+(n−1)d]}
S=n2[2a1+(n−1)d]
HOPE IT HELPS YOU?!
MARK IT AS BRAINLIEST PLZZ?!
S=a1+a2+a3+a4+...+anS=a1+a2+a3+a4+...+an
S=a1+(a1+d)+(a1+2d)+(a1+3d)+...+[a1+(n−1)d]S=a1+(a1+d)+(a1+2d)+(a1+3d)+...+[a1+(n−1)d] → Equation (1)
S=an+an−1+an−2+an−3+...+a1S=an+an−1+an−2+an−3+...+a1
S=an+(an−d)+(an−2d)+(an−3d)+...+[an−(n−1)d]S=an+(an−d)+(an−2d)+(an−3d)+...+[an−(n−1)d] → Equation (2)
Add Equations (1) and (2)
2S=(a1+an)+(a1+an)+(a1+an)+(a1+an)+...+(a1+an)2S=(a1+an)+(a1+an)+(a1+an)+(a1+an)+...+(a1+an)
2S=n(a1+an)2S=n(a1+an)
S=n2(a1+an)S=n2(a1+an)
Substitute an = a1 + (n - 1)d to the above equation, we have
S=n2{a1+[a1+(n−1)d]}S=n2{a1+[a1+(n−1)d]}
S=n2[2a1+(n−1)d]
HOPE IT HELPS YOU?!
MARK IT AS BRAINLIEST PLZZ?!
Answered by
0
Answer:
it is a good answer
Step-by-step explanation:
it
is
a
good
answer
Similar questions