derivation of three equations of motion
Answers
In case of uniform acceleration, there are three equations of motion which are also known as the laws of constant acceleration. Hence, these equations are used to derive the components like displacement(s), velocity (initial and final), time(t) and acceleration(a). Therefore they can only be applied when acceleration is constant and motion is a straight line. The three equations are,
where, s = displacement; u = initial velocity; v = final velocity; a = acceleration; t = time of motion. These equations are referred as SUVAT equations where SUVAT stands for displacement (s), initial velocity (u), final velocity (v), acceleration (a) and time (T)..
Derivation of the Equations of Motion
v = u + at
Let us begin with the first equation, v=u+at. This equation only talks about the acceleration, time, the initial and the final velocity. Let us assume a body that has a mass “m” and initial velocity “u”. Let after time “t” its final velocity becomes “v” due to uniform acceleration “a”. Now we know that:
Acceleration = Change in velocity/Time Taken
Therefore, Acceleration = (Final Velocity-Initial Velocity) / Time Taken
Hence, a = v-u /t or at = v-u
Therefore, we have: v = u + at
v² = u² + 2as
We have, v = u + at. Hence, we can write t = (v-u)/a
Also, we know that, Distance = average velocity × Time
Therefore, for constant acceleration we can write: Average velocity = (final velocity + initial velocty)/2 = (v+u)/2
Hence, Distance (s) = [(v+u)/2] × [(v-u)/a]
or s = (v² – u²)/2a
or 2as = v² – u²
or v² = u² + 2as
s = ut + ½at²
Let the distance be “s”. We know that
Distance = Average velocity × Time. Also, Average velocity = (u+v)/2
Therefore, Distance (s) = (u+v)/2 × t
Also, from v = u + at, we have:
s = (u+u+at)/2 × t = (2u+at)/2 × t
s = (2ut+at²)/2 = 2ut/2 + at²/2
or s = ut +½ at²
— that's it! mark me brainliest