Physics, asked by yanshu1, 1 year ago

derivations of chapter motion class 9 physics

Answers

Answered by kcpardhureddy12
355
Q.11 Derive Equations of Motion mathematically?
Ans.
(1) First equation of Motion:

V = u + at
soln.
Consider a body of mass “m” having initial velocity “u”.Let after time “t” its final velocity becomes “v” due to uniform acceleration “a”.

Now we know that:
Acceleration = change in velocity/Time taken

=> Acceleration = Final velocity-Initial velocity / time taken

=> a = v-u /t
=>at = v-u

or v = u + at
This is the first equation of motion.
—————————————-
(2) Second equation of motion:
s = ut + 1/2 at^2

sol.
Let the distance travelled by the body be “s”.
We know that
Distance = Average velocity X Time

Also, Average velocity = (u+v)/2

.: Distance (t) = (u+v)/2 X t …….eq.(1)

Again we know that:
v = u + at
substituting this value of “v” in eq.(2), we get

s = (u+u+at)/2 x t
=>s = (2u+at)/2 X t
=>s = (2ut+at^2)/2
=>s = 2ut/2 + at^2/2

or s = ut +1/2 at^2

This is the 2nd equation of motion.
……………………………………………………………
(3) Third equation of Motion
v^2 = u^2 +2as

sol.
We know that
V = u + at
=> v-u = at
or t = (v-u)/a ………..eq.(3)

Also we know that
Distance = average velocity X Time
.: s = [(v+u)/2] X [(v-u)/a]
=> s = (v^2 – u^2)/2a

=>2as = v^2 – u^2

or v^2 = u^2 + 2as

This is the third equation of motion.
Answered by rishit1310
10

Answer:

Q.11 Derive Equations of Motion mathematically?

Explanation:

Ans.

(1) First equation of Motion:

V = u + at

soln.

Consider a body of mass “m” having initial velocity “u”.Let after time “t” its final velocity becomes “v” due to uniform acceleration “a”.

Now we know that:

Acceleration = change in velocity/Time taken

=> Acceleration = Final velocity-Initial velocity / time taken

=> a = v-u /t

=>at = v-u

or v = u + at

This is the first equation of motion.

—————————————-

(2) Second equation of motion:

s = ut + 1/2 at^2

sol.

Let the distance travelled by the body be “s”.

We know that

Distance = Average velocity X Time

Also, Average velocity = (u+v)/2

.: Distance (t) = (u+v)/2 X t …….eq.(1)

Again we know that:

v = u + at

substituting this value of “v” in eq.(2), we get

s = (u+u+at)/2 x t

=>s = (2u+at)/2 X t

=>s = (2ut+at^2)/2

=>s = 2ut/2 + at^2/2

or s = ut +1/2 at^2

This is the 2nd equation of motion.

……………………………………………………………

(3) Third equation of Motion

v^2 = u^2 +2as

sol.

We know that

V = u + at

=> v-u = at

or t = (v-u)/a ………..eq.(3)

Also we know that

Distance = average velocity X Time

.: s = [(v+u)/2] X [(v-u)/a]

=> s = (v^2 – u^2)/2a

=>2as = v^2 – u^2

or v^2 = u^2 + 2as

This is the third equation of motion.

Similar questions