Math, asked by rehansharma6107, 10 months ago

derivative of 1-logx/1+logx w.r.t x​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\mathsf{\dfrac{1-logx}{1+logx}}

\textbf{To find:}

\textsf{Derivative of}\;\mathsf{\dfrac{1-logx}{1+logx}}

\textbf{Solution:}

\mathsf{Consider,}

\mathsf{y=\dfrac{1-logx}{1+logx}}

\textsf{Using quotient rule,}

\boxed{\mathsf{\dfrac{d(\frac{u}{v})}{dx}=\dfrac{v\,\frac{du}{dx}-u\,\frac{dv}{dx}}{v^2}}}

\mathsf{\dfrac{dy}{dx}=\dfrac{(1+logx)(\frac{-1}{x})-(1-logx)(\frac{1}{x})}{(1+logx)^2)}}

\mathsf{\dfrac{dy}{dx}=\dfrac{\frac{1}{x}[-(1+logx)-(1-logx)]}{(1+logx)^2)}}

\mathsf{\dfrac{dy}{dx}=\dfrac{\frac{1}{x}[-1-logx-1+logx]}{(1+logx)^2)}}

\mathsf{\dfrac{dy}{dx}=\dfrac{\frac{1}{x}(-2)}{(1+logx)^2)}}

\mathsf{\dfrac{dy}{dx}=\dfrac{\frac{-2}{x}}{(1+logx)^2)}}

\implies\boxed{\mathsf{\dfrac{dy}{dx}=\dfrac{-2}{x(1+logx)^2)}}}

\textbf{Find more:}

1.Y = (tan x +cot x)/ (tan x - cotx ) then dy/dx =?

https://brainly.in/question/3429497

2.If y=√x+1/√x show that 2x d y /dx +y =2√x

https://brainly.in/question/5156094

3.If y = tan^–1(sec x + tan x), then find dy/dx.

https://brainly.in/question/8085217

4.If y= log tan(π/4+x/2),show that dy/dx=secx

https://brainly.in/question/5012403

5.Y=xtanx,show that xsin^2x(dy/dx)=x^2 tan x +y sin^2 x

https://brainly.in/question/16864243

Similar questions