Math, asked by ayeskram536, 4 months ago

derivative of (1+tanq)/(sinq)​

Answers

Answered by Anonymous
13

Explanation :

ㅤㅤㅤㅤㅤ

\star\:  \rm \green{ \dfrac{d}{dx} \bigg ( \dfrac{1 +  \tan(x) }{ \sin(x) }  \bigg)}

ㅤㅤㅤㅤㅤ

Apply the quotient rule,

ㅤㅤㅤㅤㅤ

 \bold{  \bigg(\dfrac{f}{g} \bigg)' =  \dfrac{f'.g - g'.f}{g {}^{2} } }

ㅤㅤㅤㅤㅤ

 \longrightarrow \rm \:  \dfrac{ \dfrac{d}{dx} \bigg( 1 +  \tan(x)   \bigg )  \sin(x)  -  \dfrac{d}{dx} \bigg(  \sin(x) (1 +  \tan(x) \bigg) }{ \bigg( \sin(x)  \bigg) {}^{2} }  \\  \\  \\  \longrightarrow \rm \:  \dfrac{ \bigg(  \sec {}^{2} (x)  \bigg )   \sin(x) -  \bigg(   \cos(x)  (1 +  \tan(x) \bigg) }{ \bigg( \sin(x)  \bigg) {}^{2} }  \\  \\  \\   \longrightarrow \rm \dfrac{ \sec(x) \times  \sec(x)  \times  \sin(x) -  \cos(x)  \bigg( 1 +  \dfrac{ \sin(x) }{ \cos(x) } \bigg)  }{sin {}^{2} (x)} \\  \\  \\ \longrightarrow \rm \dfrac{ \sec(x) \times   \dfrac{sin(x)}{cos(x)}    -  \cos(x)  \bigg(\dfrac{  \cos(x)  + \sin(x) }{ \cos(x) } \bigg)  }{sin {}^{2} (x)}  \\  \\  \\ \longrightarrow \rm \red{ \dfrac{ \sec(x) \times  \tan(x)  -  \cos(x)   -  \sin(x)   }{sin {}^{2} (x)} }

Similar questions