Math, asked by allusai6320, 1 month ago

Derivative of 1 upon 1+coax.dx=?

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: \dfrac{1}{1 + cosax}

Let assume that

\rm :\longmapsto\:y \:  =  \:  \dfrac{1}{1 + cosax}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y \:  =  \dfrac{d}{dx}\:  \dfrac{1}{1 + cosax}

can be rewritten as

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{d}{dx} {(1 + cosax)}^{ - 1}

We know,

 \purple{\boxed{ \rm{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  - 1 \:  {(1 + cosax)}^{ - 1 - 1}\dfrac{d}{dx}(1 + cosax)

We know,

 \blue{\boxed{ \rm{ \dfrac{d}{dx}(u + v) = \dfrac{d}{dx}u + \dfrac{d}{dx}v}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  -  \:  {(1 + cosax)}^{ -2} \bigg(\dfrac{d}{dx}1 + \dfrac{d}{dx}cosax \bigg)

We know,

 \green{\boxed{ \rm{ \dfrac{d}{dx}k = 0}}}

and

 \green{\boxed{ \rm{ \dfrac{d}{dx}cosx =  -  \: sinx}}}

So, using these, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  -  \:  {(1 + cosax)}^{ -2} \bigg(0 - sinax\dfrac{d}{dx}ax \bigg)

We know,

 \red{\boxed{ \rm{ \dfrac{d}{dx}k \: f(x) =  \: k \: \dfrac{d}{dx}f(x)}}}

So, using this

\rm :\longmapsto\:\dfrac{dy}{dx} =sinax  \:  {(1 + cosax)}^{ -2} \bigg( a \: \dfrac{d}{dx}x \bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} =a \: sinax  \:  {(1 + cosax)}^{ -2} \bigg(  \: 1 \bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} =a \: sinax  \:  {(1 + cosax)}^{ -2}

\bf\implies \:\dfrac{dy}{dx} = \dfrac{a \: sinax}{ {(1 + cosax)}^{2} }

Additional Information :-

\boxed{ \rm{ \dfrac{d}{dx}x = 1}}

\boxed{ \rm{ \dfrac{d}{dx} \sqrt{x}  =  \frac{1}{2 \sqrt{x} } }}

\boxed{ \rm{ \dfrac{d}{dx} logx  =  \frac{1}{x } }}

\boxed{ \rm{ \dfrac{d}{dx} tanx  =  {sec}^{2} x}}

\boxed{ \rm{ \dfrac{d}{dx} cotx  =  { -  \: cosec}^{2} x}}

\boxed{ \rm{ \dfrac{d}{dx}secx \:  =  \: secx \: tanx}}

\boxed{ \rm{ \dfrac{d}{dx}cosecx \:  =  -  \: cosecx \: cotx}}

Similar questions