Derivative of 2x + 3y = sinx
Answers
Answered by
14
Hey there!
Solution:
2x + 3y = sinx
Now, Differentiate Both Sides wrt x.
We get:
Derivative of sinx = cosx
2 + 3 (dy/dx) = cosx
3 (dy/dx) = cosx - 2
dy/dx = (cosx - 2/3)
#Be Brainly.
Answered by
1
given
2x+3y=sinx
d(2x+3y)/dx=d(sin x)/dx
d(2x)/dx+d(3y)/dx=d(,sin x)/dx
2(dx)/dx+3(dx)/dx=d(sin x)/dx
2+3d(y)/dx= cos x
3d(y)/dx=cos x-2
d(y)/dx= 1/3(cos-2)
2x+3y=sinx
d(2x+3y)/dx=d(sin x)/dx
d(2x)/dx+d(3y)/dx=d(,sin x)/dx
2(dx)/dx+3(dx)/dx=d(sin x)/dx
2+3d(y)/dx= cos x
3d(y)/dx=cos x-2
d(y)/dx= 1/3(cos-2)
Similar questions