Math, asked by Harjotkaur21122005, 1 month ago

derivative of cosec-¹ 1+x²/2x​

Answers

Answered by senboni123456
1

Answer:

Step-by-step explanation:

We have,

\tt{y=cosec^{-1}\bigg(\dfrac{1+x^2}{2x}\bigg)}

\tt{\implies\,y=sin^{-1}\bigg(\dfrac{2x}{1+x^2}\bigg)}

\sf{Let\,\,\,x=tan(\theta)}

\sf{\dfrac{dx}{d\theta}=sec^2(\theta)\,\,\,\,\,\,\,\,\,\,...(1)}

Now,

\tt{\implies\,y=sin^{-1}\bigg(\dfrac{2\,tan(\theta)}{1+tan^2(\theta)}\bigg)}

\tt{\implies\,y=sin^{-1}(sin(2\theta))}

\tt{\implies\,y=2\theta}

\tt{\implies\,\dfrac{dy}{d\theta}=2\,\,\,\,\,\,\,\,\,\,...(2)}

Now, we have,

\sf{\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{d\theta}}{\dfrac{dx}{d\theta}}=\dfrac{2}{sec^2(\theta)}}

\sf{\implies\dfrac{dy}{dx}=\dfrac{2}{1+tan^2(\theta)}}

\sf{\implies\dfrac{dy}{dx}=\dfrac{2}{1+x^2}}

Similar questions