Math, asked by shoyebrip, 1 year ago

derivative of (cosx-cos2x) /(1-cosx)​

Answers

Answered by waqarsd
56

y =  \frac{ \cos \: x -  \cos \: 2x}{1 -  \cos \: x }  \\  \\ y =  \frac{cosx - (2 {cos}^{2} x - 1)}{1 - cosx}  \\  \\ y =  \frac{2 {cos}^{2}x - cosx - 1 }{cosx - 1}  \\  \\ y =  \frac{2 {cos}^{2}x - 2cosx + cosx - 1 }{cosx - 1}  \\  \\ y =  \frac{2cosx(cosx - 1) + 1(cosx - 1)}{cosx - 1}  \\  \\ y =  \frac{(2cosx + 1)(cosx - 1)}{(cosx - 1)} \\  \\ y = 2cosx + 1 \\  \\ differentiate \:  \: w.r.t .\:  \: x \\  \\  \frac{dy}{dx}  =  - 2sinx

hope it helps

Answered by Swarup1998
14

Answer :

d/dx {(cosx - cos2x)/(1 - cosx)}

= - 2 sinx

Solution :

Now, cosx - cos2x

= cosx - (2 cos²x - 1)

= cosx - 2 cos²x + 1

= 1 + cosx - 2 cos²x

= 1 + 2 cosx - cosx - 2 cos²x

= 1 (1 + 2 cosx) - cosx (1 + 2 cosx)

= (1 + 2 cosx) (1 - cosx)

Then, d/dx {(cosx - cos2x)/(1 - cosx)}

= d/dx {(1 + 2 cosx) (1 - cosx)}/(1 - cosx)

= d/dx (1 + 2 cosx)

= d/dx (1) + 2 d/dx (cosx)

= - 2 sinx

Rules :

d/dx (cosx) = - sinx

d/dx (sinx) = cosx

Similar questions