derivative of (cosx-cos2x) /(1-cosx)
Answers
Answered by
56
hope it helps
Answered by
14
Answer :
d/dx {(cosx - cos2x)/(1 - cosx)}
= - 2 sinx
Solution :
Now, cosx - cos2x
= cosx - (2 cos²x - 1)
= cosx - 2 cos²x + 1
= 1 + cosx - 2 cos²x
= 1 + 2 cosx - cosx - 2 cos²x
= 1 (1 + 2 cosx) - cosx (1 + 2 cosx)
= (1 + 2 cosx) (1 - cosx)
Then, d/dx {(cosx - cos2x)/(1 - cosx)}
= d/dx {(1 + 2 cosx) (1 - cosx)}/(1 - cosx)
= d/dx (1 + 2 cosx)
= d/dx (1) + 2 d/dx (cosx)
= - 2 sinx
Rules :
d/dx (cosx) = - sinx
d/dx (sinx) = cosx
Similar questions