Math, asked by iqralaraib349, 2 months ago

derivative of cosx wrt x

Answers

Answered by mathdude500
4

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

 : \implies \tt \: cosx - cosy = -  2sin( \frac{x + y}{2} )sin( \frac{x - y}{2})

 : \implies \tt \: \tt \:\lim_{y\to 0} \dfrac{sin \: y}{y}  \:  = 1

\large\underline\purple{\bold{Solution :-  }}

 : \implies \tt \: Let \: f(x) \:  =  \: cosx

 : \implies \tt \: change \: x \: to \: x \:  +  \: h

 : \implies \tt \: f(x + h) = cos(x + h)

★ By using first principal, we get

 : \implies \tt \: f'(x) =\lim_{h\to 0}\dfrac{f(x + h) - f(x)}{h}

 : \implies \tt \: f'(x) =\lim_{h\to 0}\dfrac{cos(x + h) - cosx}{h}

 : \implies \tt \: f'(x) =\lim_{h\to 0}\dfrac{ - 2sin( \frac{x + h + x}{2} ) \: sin( \frac{x + h - x}{2}) }{h}

: \implies \tt \: f'(x) =\lim_{h\to 0}\dfrac{ - 2sin( \frac{2x + h}{2} ) \: sin( \frac{ h }{2}) }{h}

 : \implies \tt \: f'(x) = - sinx \times \lim_{h\to 0}\dfrac{sin \frac{h}{2} }{ \frac{h}{2} }

 : \implies \tt \: f'(x) = -  \: sinx

Similar questions