Math, asked by sania4277, 1 year ago

derivative of f (x) = 3 - 4x^2, at x=5

Answers

Answered by AbhijithPrakash
3

Answer:

\mathrm{Derivative\:of\:}3-4x^2\mathrm{\:at\:}x=5:\quad -40

Step-by-step explanation:

\dfrac{d}{dx}\left(3-4x^2\right)

\mathrm{Apply\:the\:Sum/Difference\:Rule}:\quad \left(f\pm g\right)'=f\:'\pm g'

=\dfrac{d}{dx}\left(3\right)-\dfrac{d}{dx}\left(4x^2\right)

\dfrac{d}{dx}\left(3\right)

\mathrm{Derivative\:of\:a\:constant}:\quad \dfrac{d}{dx}\left(a\right)=0

=0

\dfrac{d}{dx}\left(4x^2\right)

\mathrm{Take\:the\:constant\:out}:\quad \left(a\cdot f\right)'=a\cdot f\:'

=4\dfrac{d}{dx}\left(x^2\right)

\mathrm{Apply\:the\:Power\:Rule}:\quad \dfrac{d}{dx}\left(x^a\right)=a\cdot x^{a-1}

=4\cdot \:2x^{2-1}

\mathrm{Simplify}

=8x

=0-8x

\mathrm{Simplify}

=-8x

\mathrm{Find\:the\:value\:of\:}-8x\mathrm{\:for\:}x=5

\mathrm{Plug\:}x=5\mathrm{\:into\:the\:equation\:}-8x

-8\cdot \:5

\mathrm{Refine}

-40

Attachments:
Similar questions