Math, asked by gayatrikhanzode11, 11 months ago

derivative of inverse function of y= log(2x-1)​

Answers

Answered by TanikaWaddle
6

Let y = f(x)= log_e(2x-1)  

Let us find the inverse first i.e. f^{-1} (x).

Step 1: Swap x and y

x = log_e(2y-1)

Step 2: Find the value of y

Writing in exponential form:

e^{x} = e^{log_e(2y-1)}\\\Rightarrow e^{x} = (2y-1)\\\Rightarrow y = \dfrac{1}{2}(e^{x} +1)

Step 3: Write y as f^{-1} (x) i.e. inverse function.

f^{-1} (x) =\dfrac{1}{2}(e^{x} +1)

Now, taking derivative:

\dfrac{d}{dx}(f^{-1}(x) ) = \dfrac{d}{dx}(\dfrac{e^{x} }{2}+\dfrac{1}{2} ) \\\Rightarrow \dfrac{1}{2} \dfrac{d}{dx}(e^{x}) + \dfrac{d}{dx} (\dfrac{1}{2})\\\Rightarrow \dfrac{e^{x} }{2}

Formulas used above:

1. \dfrac{d}{dx} (\text{ Constant}) = 0

2. \dfrac{d}{dx} (\text{ Constant }\times f(x)}) = \text{ Constant }\times \dfrac{d}{dx} (f(x)})

3. \dfrac{d}{dx} (e^{x} ) = e^{x}

So, answer is \dfrac{e^{x} }{2}.

Answered by salehafirdoseshaikh
0

Step-by-step explanation:

y=log(2x-1) solve this following equation

Similar questions