Math, asked by ayeshaawan1509, 1 month ago

derivative of ln(1-cos x)​

Answers

Answered by Anonymous
4

To differentiate :-

  • ln ( 1 - cos x )

‎ ‎ ‎

Solution :-

We know that,

  •  \rm  \:  \dfrac{d}{dx}  \bigg( constant\bigg) = 0

  •  \rm  \:  \dfrac{d}{dx}  \bigg( cos \: x\bigg) =  - sin \: x

  • \rm\: \dfrac{d}{dx}\bigg(ln\:x \bigg)=\dfrac{1}{x}

Apply chain rule [ f(g(x)) ]=f'(g(x)) g'(x)

‎ ‎ ‎

 \rm \implies\dfrac{d}{dx} \bigg[ln \: (1 -  \cos \: x) \bigg]=  \dfrac{1}{1 -  \cos \: x }  \times  \dfrac{d}{dx}  \bigg(1 -  \cos \: x\bigg)

 \rm \implies\dfrac{d}{dx}  \bigg[ln \: (1 -  \cos \: x)\bigg] =  \dfrac{1}{1 -  \cos \: x }  \times 0 - ( -  \sin \: x)

 \rm \implies\dfrac{d}{dx} \bigg[ln \: (1 -  \cos \: x) \bigg]=  \dfrac{1}{1 -  \cos \: x }  \times( 0  + \sin \: x)

 \rm \implies\dfrac{d}{dx} \bigg[ln \: (1 -  \cos \: x) \bigg]=  \dfrac{1}{1 -  \cos \: x }  \times(  \sin \: x)

 \rm \implies \:  \dfrac{d}{dx}  \bigg[ ln \: (1 -  \cos \: x) \bigg]=  \dfrac{ \sin \: x }{1 -  \cos \: x }

Hence the derivative of ln (1 - cos x ) = sin x / 1 - cos x.

‎ ‎ ‎

More formulas :-

‎ ‎ ‎

 \bullet \rm  \:  \dfrac{d}{dx}  \bigg( sin \: x\bigg) =   cos \: x \\

‎ ‎ ‎

 \bullet \rm  \:  \dfrac{d}{dx}  \bigg( tan \: x\bigg) =   sec ^{2}  \: x \\

‎ ‎ ‎

 \bullet \rm  \:  \dfrac{d}{dx}  \bigg( sec \: x\bigg) =   sec  \: x.tan \: x \\

‎ ‎ ‎

 \bullet \rm  \:  \dfrac{d}{dx}  \bigg( {e}^{x} \bigg) =    {e}^{x}  \\

‎ ‎

 \bullet \rm  \:  \dfrac{d}{dx}  \bigg( \dfrac{1}{x}  \bigg) = - \dfrac{1}{ {x}^{2} } \\

‎ ‎ ‎

Similar questions