derivative of sech(lnx)
Answers
Answered by
5
Hello Mate ❤️
Answer:
We can easily obtain the derivative formula for the hyperbolic tangent:
(tanhx)′=(sinhxcoshx)′=(sinhx)
Thanks ☺️ ❤️
Answered by
65
Answer -
____________________________________
- let y=cosh(lnx)
- ⇒y=12⋅(elnx −e−lnx).
- =12⋅(elnx+elnx−1).
- =12(x+x−1).
- dyd x=12(1+(−1)⋅x−2)=12(x2−1x2)
- =x2−12x2.
____________________________________
→ Hope it will help you ❣️❣️
Similar questions